toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bowell, R.J.; Connelly, R.J.; Ellis, J.; Cowan, J.; Wood, A.; Barta, J.; Edwards, P. openurl 
  Title A review of sulfate removal options from mine waters Type Journal Article
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; bacteria; bioremediation; decontamination; effluents; ground water; legislation; osmosis; oxidation; pollutants; pollution; remediation; reverse osmosis; selenites; sulfate ion; toxic materials; USGS; water treatment 22 Environmental geology; 02A General geochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Open-File Report - U. S. Geological Survey, Report: OF 97-0496 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 4th International symposium on Environmental geochemistry; proceedings Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 1998-068727; 4th International symposium on Environmental geochemistry, Vail, CO, United States, Oct. 5-10, 1997 U. S. Geol. Surv., Denver, CO, United States; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 6287 Serial 438  
Permanent link to this record
 

 
Author Ziemkiewicz, P.; Skousen, J.; Simmons, J. openurl 
  Title Cost benefit analysis of passive treatment systems Type Journal Article
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage; acidification; Augusta coal field; Big Bear Lake; carbonate rocks; coal mines; cost; dams; drainage basins; economics; ferric iron; Indiana; iron; limestone; metals; mines; optimization; oxidation; Pike County Indiana; pollution; Preston County West Virginia; pyrite; sedimentary rocks; South Fork Patoka River; spoils; sulfate ion; sulfides; surface water; United States; water pollution; water quality; water resources; water treatment; West Virginia 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher West Virginia Surface Mine Drainage Task Force Symposium Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Proceedings, 22nd West Virginia surface mine drainage task force symposium Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2002-047125; Twenty-second West Virginia surface mine drainage task force symposium, Morgantown, WV, United States, April 3-4, 2001 References: 7; illus. incl. 9 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5766 Serial 191  
Permanent link to this record
 

 
Author Aube, B.C.; Zinck, J.M. openurl 
  Title Comparison of AMD treatment processes and their impact on sludge characteristics Type Journal Article
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage cost decontamination density discharge geochemistry hydrochemistry leaching lime metals mine dewatering neutralization pH pollution remediation sludge stability tailings toxicity viscosity waste disposal water treatment 22, Environmental geology  
  Abstract Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sudbury Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Mining and the Environment II Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2002-060865; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 10; illus. incl. 6 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16574 Serial 473  
Permanent link to this record
 

 
Author Davies, G.J.; Holmes, M.; Wireman, M.; King, K.; Gertson, J.N.; Stefanic, J.M. openurl 
  Title Water tracing at scales of hours to decades as an aid to estimating hydraulic characteristics of the Leadville Mine drainage tunnel Type Journal Article
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords acid mine drainage Arkansas River Colorado drainage dye tracers field studies fluorescence ground water Lake County Colorado Leadville Mine Leadville mining district pH quantitative analysis recharge surveys tunnels United States water treatment 30 Engineering geology 21 Hydrogeology  
  Abstract The Leadville Mine Drainage Tunnel (LMDT) is a 3.3 kilometer structure that was constructed in the complicated geology of the Leadville mine district in the 1940's. Discharge from the LMDT is impacted by heavy metals and is treated at a plant built in 1992 operated by the United States Bureau of Reclamation. On the surface waste rock and other remnants of the mining operations litter the landscape and this material is exposed to precipitation. As a result of contact with this material, surface water often has pH of less than 3 and its containment and disposal is necessary before it impacts surface drainage and the nearby Arkansas River. Using a borehole drilled into the mine workings the U.S. EPA has devised a plan in which the impacted water is contained on the surface which then can be discharged into the mine workings to discharge from the LMDT and be treated. The percentage of water discharging from the mining district along the drainage tunnel is unknown, and since there is no access, information about the condition of the tunnel with regards to blockages is also relatively obscure. Application of quantitative water tracing using fluorescent dyes was used to model the flow parameters at the scale of hours in the tunnel and evaluate the likelihood of blockages. Because the tunnel has intersected several lithologies and faults, other locations such as discharging shafts, adits and surface streams that could be hydraulically connected to the LMDT were also monitored. An initial tracer experiment was done using an instantaneous injection, which was followed by additional injections of water. Another tracer injection was done when there was a continuous flow of impacted water into the workings. Analysis of the tracer concentration responses at water-filled shafts and at the portal were used to model the flow along the tunnel and estimate several hydraulic parameters. Waters in these settings are mixtures of components with different residence times, so, qualitative tritium data were used to evaluate residence times of decades. The combined injected tracer and tritium data as well as other geochemical data were used to infer the nature of flow and recharge into the tunnel.  
  Address  
  Corporate Author Thesis  
  Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Geological Society of America, 2001 annual meeting Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2004-013418; Geological Society of America, 2001 annual meeting, Boston, MA, United States, Nov. 1-10, 2001; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16511 Serial 408  
Permanent link to this record
 

 
Author Younger, P.L.; Cornford, C. openurl 
  Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology  
  Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.  
  Address  
  Corporate Author Thesis  
  Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 16506 Serial 194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: