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Extended Abstract 

Mining influenced water (MIW), especially acid mine drainage (AMD), but also 

circum-neutral and alkaline drainage, is a threat to mining communities in South 

Africa and beyond. It is therefore imperative that MIW is properly treated before it 

can be discharged into receiving water courses for potential domestic and industrial 

use. Mine water quality changes over time and is unpredictable unless proper 

techniques are applied. Technology relating to mine water management in the 

mining industry is often outdated and therefore needs to be improved. This thesis 

introduces the use of artificial intelligence (AI) and the Internet of Things (IoT) 

techniques to optimise mine water management. 

The study is divided into four sections: in the first section, the IoT techniques were 

explored by using radio-frequency identification (RFID) technology in conjunction 

with mobile and website applications in mine water sampling (eMetsi — e-Tag based 

Mine Water Evaluation, Testing, Sampling and Identification. eMetsi means 

electronic water in Setswana language). The mining industry and many other 

industries are still widely using hand labelled or barcoded sample containers for 

identification and tracking purposes, and this has proven to be a time-consuming 

practice being prone to errors. In addition, when samples are taken, there is currently 

no direct communication between the sampling site, laboratory information 

management system and the sampling institution. This further slows down exchange 

of data and can result in high response times to regulating the plant’s parameters. 

Fast communication between the samplers, the laboratory and the clients is 

therefore important for keeping to environmental targets. This study explored the 

practice of incorporating Near-Field Communication (NFC) tags to sampling bottles, 
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usage of a NFC mobile application for recording on-site parameters during sampling 

and display of this data on a website application. 

The second and third sections focused on AI supported prediction and forecasting of 

mine water parameters using hybrid intelligent models. In the second section, the 

hybrid model consisted of the long short-term memory (LSTM), gradient boosting 

regression tree and random forest regression tree models. Using Python 

programming language within an Anaconda platform, machine learning (ML) models 

were built using historical data from 2016 to 2021 to predict electrical conductivity 

(EC) and pH of MIW from the “Acid Mine Drainage” treatment plant in Springs, South 

Africa. The random forest and gradient boosting models were deployed as a web 

application using Flask application programming interface (API) and Heroku cloud 

platforms for prediction of EC and pH. The LSTM model was used to forecast data 

that was therefore supplied to the web application to predict the values of EC and pH 

for 60 days. 

In the third section, the task was to compare the neural networks with regression 

trees and select the best performing model to forecast mine water parameters. This 

approach explored the multivariate LSTM, artificial neural network (ANN), deep 

neural network (DNN), random forest and gradient boosting models. Westrand gold 

mine’s treatment plant in Randfontein, South Africa was used as an example in this 

study, in which historical mine water data (2016–2021) from shaft № 9 is used to 

build the ML models. The multivariate LSTM model was used to forecast data that 

were supplied to the best performing model to forecast Fe and acidity for 60 days. 

Additionally, this section explored robust statistical analysis for time series data, 

where various ways to interpolate the missing data and detect anomalies were 

tested. 
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The last section focused on the machine learning graphical user interface (GUI). The 

developed GUI can load CSV data, perform data pre-processing and visualisation on 

the loaded data. Several ML algorithms (gradient boosting regression tree, random 

forest regression tree and linear regression) are embedded in the GUI. Instead of 

writing long Python code lines, the ML models can be built in just a few clicks using 

the GUI. 

This thesis with the tested AI and IoT techniques will ensure that the mine water 

treatment plants find efficient ways to treat and manage MIW. In addition, the 

presented techniques can be applied to optimise wastewater treatment plants. When 

put all together, the main purpose of the explored techniques was to predict and 

forecast the chemistry of MIW so the treatment plant operators can better plan the 

chemical, electricity and working power that they need to treat and manage MIW 

efficiently. 
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CHAPTER 1 

1 Introduction 

1.1 Brief summation of the thesis 

The thesis has been organised into nine chapters, each with detailed information and 

thorough data analysis. A summation of each section is presented below: 

Introduction 

The introduction displays a general background on the use of digital technologies in 

the mining industry. A brief problem statement, hypothesis outline and proposed 

solutions are also given. 

Literature Review 

In the literature review, the use of digital technologies in the mining industry is 

evaluated in detail explaining them with clear and current examples. This chapter 

touches on the persisting mining influenced water (MIW) problem in the mines due to 

the aging technology. It also gives an overview on the use of machine learning (ML) 

methodologies, i.e. random forest, artificial neural networks (ANN) and gradient 

boosting regression tree. A thorough overview of other predictive ML models is 

presented in this section. This literature review chapter is based on the following 

published research outputs: 

 More, K. S., Wolkersdorfer, Ch., Kang, N. & Elmaghraby, A. S. (2020): 

Automated Measurement Systems in Mine Water Management and Mine 

Workings – A Review of Potential Methods. Water Resour. Ind. Article 

100136, doi: 10.1016/j.wri.2020.100136 
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 More, K. S. & Wolkersdorfer, Ch. (2019): Disruptive Technologies in Mine 

Water Management – The Future. Oral Presentation and Full Paper 

Publication. In: Khayrulina, E.; Wolkersdorfer, Ch.; Polyakova, S.; Bogush, A.: 

Mine Water – Technological and Ecological Challenges. International Mine 

Water Association Congress. p. 597–602; Perm, Russia (Perm State 

University, 15–19 July 2019) 

Methodology 

The methodology chapter outlines the procedures for the radio frequency 

identification (RFID)–based mine water sampling process and protocol, and the 

application of ML methodologies. It gives a detailed structure of the random forest 

algorithm, ANN and gradient boosting technique for mine water management. Usage 

of Python programming language and its libraries is also given in full detail under this 

chapter. 

eMetsi – RFID Controlled Mine Water Sample Management 

eMetsi is an application developed for electronic tracking and identification of mine 

water samples and sampling results. The eMetsi application chapter explain the 

development and use of near-field communication (NFC) mobile application and 

supporting website application. These applications are used for mine water sample 

management. The main purpose of this chapter was to utilise the internet of things 

(IoT) techniques to share sampling data in real-time. eMetsi chapter forms part of the 

following research output: 

 More, K. S. & Wolkersdorfer, Ch. (2022): Intelligent Mine Water Management 

Tools — eMetsi and Machine Learning GUI. Mine Water Environ. Under 

Review. 
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Review of Some of the Techniques for Missing Data Interpolation and Anomaly 

Detection in Time Series 

This chapter about missing data and anomalies gives a brief review of different 

methods that can be applied in time series for handling missing data and properly 

detecting anomalies. Old and new methods have been thoroughly discussed, and 

some of the methods are applied in this thesis. This thesis is largely based on data 

analytics techniques, and this chapter introduces the beginning of the 

aforementioned methodology. It should be noted that data was not used in this 

chapter to explain the discussed techniques. However, the majority of the discussed 

techniques were applied in the following chapters of the thesis. 

Developing Artificial Intelligence Systems – Web Application for Predictive 

Analysis 

The AI web application chapter explains the usage of ML regressors for predictive 

analysis. ML regression model evaluation is thoroughly explained with different 

evaluation metrics. This chapter also goes into details of deploying trained and 

tested ML models using Flask application programming interface (API) and Heroku 

cloud platform. Data supporting this study are available as an online resource 

(www.wolkersdorfer.info/disskgmore). Most parts of this AI web application chapter 

are based on the following published research output: 

 More, K. S. & Wolkersdorfer, Ch. (2022): Predicting and Forecasting Mine 

Water Parameters Using a Hybrid Intelligent System. Water Resour. Manage. 

doi:10.1007/s11269-022-03177-2 
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Data Analytics and Forecasting with Machine Learning Models 

The data analytics and machine learning models chapter compares different models 

to select the best performing one and use it to forecast mine water parameters. This 

approach trained and tested the multivariate long short-term memory (LSTM), 

artificial neural network (ANN), deep neural network (DNN), random forest and 

gradient boosting regression tree algorithms. Exploratory data analysis techniques 

are also explored in this chapter with the use of robust statistics. Data supporting this 

study are available as an online resource (www.wolkersdorfer.info/disskgmore). This 

chapter is an extended version of the following research output: 

 More, K. S. & Wolkersdorfer, Ch. (2022): Data Analytics behind Forecasting of 

Nonlinear Systems Using Machine Learning Models — An Example with 

Mining Influenced Water Data. Water Resour. Ind. Under Review. 

The Internet of Mine Water — Python Machine Learning Graphical User 

Interface 

This graphical user interface (GUI) chapter gives a detailed overview of the 

developed Python ML GUI for this thesis. In this GUI, data can be loaded and data 

pre-processing and visualisation can be performed on the loaded data. Several ML 

algorithms are imbedded in the GUI which can be used on the loaded data. An 

executable file for the GUI application is available as an online resource 

(www.wolkersdorfer.info/disskgmore). The GUI chapter forms part of the following 

research output: 

 More, K. S. & Wolkersdorfer, Ch. (2022): Intelligent Mine Water Management 

Tools — eMetsi and Machine Learning GUI. Mine Water Environ. Under 

Review. 
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Conclusions and Recommendations 

In the conclusions chapter, overall concluding remarks and recommendations 

according to the findings of the research are presented. The discoveries of the 

investigations are outlined and recommendations are put forward for further studies 

relating to this research study. 

1.2 Background of the study 

Effective treatment of mine water has often proven to be an illusion, with a number of 

mines contributing severely to water pollution. The current models used in treating 

mine water are not ideal as they treat mine water based on the compositions and 

volumes of water entering the plant (Figure 1.1 left). This means that the plant needs 

to react instantly when the volumes or chemistry of mine water changes. In most 

cases, there is no interaction between the precipitation, water inflow into the mine, 

technological changes within the mine, water analyses of the plant and the outflow of 

the treated water (Gao et al., 2014; Golestanifar & Ahangari, 2012; More & 

Wolkersdorfer, 2019; Nalecki & Gowan, 2008; Usher et al., 2010; Wolkersdorfer, 

2008). 

Technology used in the mines (e.g. data management technologies), especially 

South African mines, is aging and needs to be improved. Therefore, all sectors of the 

South African mines needs to be modernised to prevent premature mine closures, 

job losses and persisting water contamination by harmful contaminants from the 

mines. Consequently, technological improvement in the mines will lead to a safer 

and healthier environment, improved skills development and decrease in mine 

fatalities. The introduction of the Internet of Mine Water (IoMW), which was first 

mentioned and described by Wolkersdorfer (2013), will ensure that the technology in 
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the mines is improved, and all aspects of mine water management from sampling to 

data processing and eventually intelligent mine water management (iMineWa) are 

included (Figure 1.1 right). 

 

Figure 1.1: Comparison of past and current mine water treatment (left) with future mine 

water treatment plant using elements of iMineWa (right)   

Developing such systems in the mining environment helps to thoroughly research, 

implement and improve existing technology in the mines (Zulkifli et al., 2018). The 

research reported in this thesis introduces the IoMW and uses it to optimise mine 

water management. The IoMW is able to deal with large quantities of information 

from the mine water data and can also analyse it to ultimately make practical 

business decisions. In addition, the IoMW platform can be compared to systems in 

modern cars on which sensors are constantly collecting status information about the 

car’s systems and performance. These data are transferred and stored in a device 

passing the data to a gateway, which integrates and processes this data. Based on a 
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set of algorithms, relevant information is transmitted to the manufacturer of the car. 

Yet, this data is only transmitted if, after a registration process, a secure 

communication channel between the car’s platform, gateway and the manufacture is 

established. Should, for example, after a longer drive, the pressure in the break 

system deviates from the normal status, an error message will be logged. This, 

thereafter, triggers a “check engine” message for the driver, who then knows that the 

car has to be brought to a garage, where the mechanics can review the detailed 

error messages from a central server (Chen et al., 2015; Lee & Lee, 2015; 

Wortmann & Flüchter, 2015). All these processes are based on the Internet of 

Things (IoT). 

The IoT is a system of physical things embedded with sensors, electronics, software 

and connectivity to allow it to perform better by exchanging information with other 

connected devices (Lee & Lee, 2015). Therefore, the IoMW is derived from the idea 

of the IoT, and this technology was applied in this thesis for mine water 

management. The IoT, which very likely was first mentioned in the year 2000 in the 

United States of America (SRI Consulting Business Intelligence, 2008), is referred to 

all “things” that are somehow tangible and, theoretically, could be reached by an 

internet address. Yet, the IoMW is more than just referring to “things”. It also includes 

data and the results of data processing coming from common statistical procedures 

or the procedures involved to analyse “big data”. Big data is extremely large amounts 

of data that can only be analysed computationally to reveal patterns and trends 

(Millie et al., 2013); it is not identical with “a lot of data”. 

Further comparison of the IoMW can be made with the industry 3.0 (e.g. 

Wolkersdorfer, 2013) or industry 4.0 (e.g. Gilchrist, 2016; Lasi et al., 2014) because 

of the advanced technologies (e.g. artificial intelligence and IoT) integrated in its 
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system. Nanda (2020) describes the importance of integrating Industry 4.0 

technologies in mines to improve production and increase profits. In order to survive 

in the competitive market, smart mining is imperative. This will see technologies such 

as Big data, IoT, Machine to Machine (M2M), data analytics, sensor networks, 

drones, and robotics increase efficiency in critical mining activities such as mine 

water management, drilling, surveying, processing and transportation (Nanda, 2020). 

An additional advantage of Industry 4.0 applications in the mine water sector is its 

contribution to Integrated Mine Water Management Plans (IMWMP) as outlined by 

Chahbandour (2013). An IMWMP also requires that all mine departments cooperate: 

mine water management is incorporated into the overall mine plan, on-site and off-

site risks relating to mine water are understood and internal and external 

commitments of the mine are supported at all times (Chahbandour, 2013). Water 

contamination by mining activities is a concerning issue and this was accurately 

emphasised by Hopwood and Deloitte Touche Tohmatsu Limited (2018): “With each 

passing year, water has become a more critical issue for the mining sector” and 

because of the many changes that the mining industry encounters, “mining 

companies must enhance their approach to water management”. 

Organisations have begun presenting various IoT based items and services. It was 

about time that this kind of innovation is introduced in the mining industry, particularly 

in mine water management, as it is difficult to manage mine water. Only a few mines 

are currently utilising these new emerging technologies, and their experience 

showed that they are profiting substantially from these innovations. These mines 

include the Hull Rust (United States, Minnesota), Garzweiler (Germany, North Rhine-

Westphalia), Escondida (Chile, Antofagasta Region), Bingham Canyon (United 

States, Utah), Berkeley Pit mines (United States, Montana) (Chadwick, 2016), Rio 
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Tinto Pilbara iron ore (Australia, Perth) (Nanda, 2020) or Newtrax Technologies 

(Canada), who also implemented artificial intelligence systems (International Mining, 

2019). All of them have in common that they use state-of-the-art technologies and 

software, ensuring that they maximise their profit without having to cut off their 

employees (Athresh et al., 2017; Mousavi & Sellers, 2019). Experts progressively 

recognize the IoT could develop into a market worth 7.1 billion US dollars by 2020 

and beyond (Lee & Lee, 2015). Therefore, the IoMW has a great potential, in the 

wake of being created, of booming to such a market worth as IoT. Though the term 

IoT is currently extensively utilized; however, there is presently no basic definition of 

what the IoT really incorporates (Wortmann & Flüchter, 2015). With IoMW, it was 

diverse such that it was comprehended what it really includes, i.e. data and the 

results of data processing. 

In the past years, the IoT started to change the way people are living, how they 

drive, how they purchase items and how the energy is distributed into their houses or 

factories. In a growing number of items, sensors or chips are implemented to help 

them communicate with each other and transferring data to allow a better 

understanding of these items performance or behaviour (Atmaja et al., 2021; Song et 

al., 2020). Key for these devices or applications to work together or exchange data is 

a common IoT platform and a common language. This allows these devices to share 

large quantities of data for, e.g., improving industrial processes or to monitor 

peoples’ health conditions (e.g. Lee & Lee, 2015; SRI Consulting Business 

Intelligence, 2008; Wortmann & Flüchter, 2015). In this thesis, IoT technology was 

used to develop an application which share mine water data in real-time. 
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1.3 Problem statement and definitions 

Many mining companies worldwide are reluctant or waiting to fully adopt Industry 3.0 

or 4.0 technologies. However, efforts are being made at several mining companies 

that already use automation options and computational intelligence methods (Corke 

et al., 1998; Duff et al., 2003). This is a first step to qualify mines into the 4th 

industrial revolution, yet more efforts might be needed (Lööw et al., 2019). The slow 

advancement of this technology sees the mines slowing down in production 

compared to those that implement state-of-the-art technologies, and others affecting 

nearby community water sources, which can be considered a severe concern in 

some areas. 

The main limitation blocking most of the mines to smoothly transition to Industry 4.0 

is the type of network they use. Highly recommended for this transition is the 5G 

network (Figure 1.2), because of its fast speed (Rodriguez, 2016; Xiang et al., 2017). 

The 5G network will help fuel the rise of IoT technology and provide the 

infrastructure needed to carry out big data processing (Al-Dulaimi et al., 2018; Millie 

et al., 2013). This network will add vital contributions to the industry, such as 

transferring or moving big data with greater speed (Millie et al., 2013), increase the 

responsiveness of connected devices such as wireless sensor networks and other 

smart devices (Agrawal et al., 2019; Al-Dulaimi et al., 2018; Asif, 2019; Farrugia, 

2011). 

Current mine water management usually consists of “blindly” end-of-the-pipe 

treatment. This treatment does not take into consideration mine water chemistry or 

volume changes prior to arriving at the plant (Wolkersdorfer, 2008). Neither does it 

take into consideration the effects of the weather or operational procedures. Yet, all 

these parameters can be monitored and processed regularly and potential changes 
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in volume or the water chemistry can be identified hours or weeks in advance, 

allowing the mine water management (e.g. pumping rates) and treatment to adjust to 

the predictable, future changes. In addition, this allows optimising the work flow at 

the mine water management site and ordering consumables or scheduling electricity 

needs before they are necessary. 

 

Figure 1.2: The 5G ecosystem 

In this thesis, smart technologies were used to improve the current processes and 

describe and test a path forward to intelligent mine water management. Combination 

of IoT and artificial intelligence techniques were applied to build predictive and 

forecasting models for mine water quality. The computational intelligence techniques 

applied in this thesis used physico-chemical parameters (i.e. Mn, Fe, SO4, 

temperature, electrical conductivity, turbidity, pH, TDS, TSS), RFID controlled 

sample management, results of chemical analyses of the mine water and data 

processing (e.g. statistics of various scales). Because of the large volumes of data 
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used, big data analyses were applied in the process and included ML algorithms 

such as random forest (Breiman, 2001), gradient boosting tree (e.g. Johnson et al., 

2017) and neural networks (e.g. Diamantopoulou, 2005; Singh et al., 2009). 

Therefore, this eventually resulted in “smarter” ways of analysing big mine water 

datasets. 

1.4 Hypothesis 

The Internet of Mine Water provides an integrated control of all relevant water 

related processes within the mine and the plant to optimise mine water management 

and treatment. 

1.5 Aims and Objectives of the study 

The main aims of this research were to improve current mine water management 

technologies by: 

 Improving existing technologies, 

 Implementing existing technologies, 

 Researching new technologies (e.g. artificial intelligence), and 

 Setting up a case study for the RFID controlled mine water sampling 

processes. 

The main goals for the thesis were as follows: 

 Improve the technology in the mines by implementing the IoMW. This ensured 

that new technologies are researched, improved and implemented, 

 Bring mine water management to the next stage by helping with accurate data 

collection and monitoring, monitor any small change in mine water quality and 

re-use process water, 
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 Build models that can be used to forecast the future chemistry of mine water, 

and 

 Enable the mining industry to treat and manage mine water at a lower cost 

and eventually contribute positively in reducing receiving water sources 

pollution. 

Having performed the above-mentioned activities, the main objective was to develop 

the “Internet of Mine Water” which can provide integrated control of all relevant water 

related processes within the mine, and achieve the technologically advanced 

treatment plant. The idea behind this was that large datasets are collected and be 

made available to build computational intelligence techniques to optimise mine water 

management. 

1.6 Proposed solutions 

This thesis, by means of ML or AI automation, was aimed to develop a model of a 

mine that uses the IoMW. It also developed a case study for the Radio Frequency 

Identification (RFID)-based mine water sampling. The term RFID refers to an 

identification system involving small radio frequency devices for easy identification 

and tracking purposes (Cheng et al., 2008; Zhuiykov, 2012). The use of ML helped 

to visualise and dynamically simulate the large amounts of data collected on mine 

site. 

The IoMW is advantageous because of real-time mine water data monitoring/sharing 

and accurate big data analysis. Additionally, it helps in detecting any changes in the 

mine water quality trend before it occurs, i.e. early detection of changes in the mine 

water chemistry and volumes. More future advantages include inflow and outflow 

monitoring that will allow for an accurate water balance and therefore take 
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precautions when there are risks of overflow in the plant, and reduced uncertainty in 

determining the potential risks posed by the mine on the environment, e.g. flooding 

will be detected before it occurs. Costs of treating mine water will be reduced as 

there might be no necessity for regular chemical monitoring of the full set of 

analyses, and all necessary steps can be done using the system discussed in this 

context. The technology will also help in improvement of mine water models, i.e. 

chemical and water balance models. 

IoMW features are unique, and make it possible to achieve the true potential of state 

of the art technologies in the mines. These are the four unique features: 1) connect 

various things to the IoMW platform, 2) analyse the data collected and use it to build 

business intelligence, 3) integrate various models to improve user experience and 4) 

optimise mine water management and treatment. 

The IoT and industry 4.0 describe a similar process, which is connecting things to 

the internet. However, the only difference is that IoT is related to a consumer while 

industry 4.0 is related to production (Gilchrist, 2016; Lasi et al., 2014). Industry 4.0 

was implemented for the rapid growth of economic and social digitisation. The main 

idea of the industrial internet is to combine the production methods, state of the art 

information and communication technology. 

Based on the literature and information review for this thesis, the following summary 

can be given: all the reference lists of the included papers, information gathering 

from consultants, electronic database and grey literature searches, reveal that mines 

are widely using the traditional or “old style” of mine water treatment and 

management (e.g. Gao et al., 2014; More & Wolkersdorfer, 2019; Nalecki & Gowan, 

2008; Wolkersdorfer, 2008). By introducing the new technologies, e.g. IoT (Duff et 
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al., 2003; Lee & Lee, 2015; Sun et al., 2012), WSN (Agrawal et al., 2019; Farrugia, 

2011; Molina et al., 2011; Song et al., 2010) or the 5G network (Al-Dulaimi et al., 

2018; Asif, 2019) at the mine sites would ensure that all parameters that need to be 

known for an optimised mine water process will be collected and used to predict and 

forecast mine water chemistry and treat mine water effectively, as this was the case 

in this thesis. This, for example, is also being practiced in Ghanaian mines whereby 

they integrate IoT technologies to maximise production (pers. comm. R. Bonner, 

Miwatek). In the next chapter, the mentioned technologies will be thoroughly 

explained and their linkage to this thesis will be shown. 
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CHAPTER 2 

2 Literature Review 

2.1 Explanation of Technologies 

2.1.1 The Internet of Things (IoT) 

Internet of Things (IoT) aims at growing the intensity of the internet past cellular 

phones and computers to an entire scope of different things, environments and 

processes. The “things” in the IoT are used to gather and send data or do both 

(Coetzee & Eksteen, 2011; Díaz et al., 2016; Miorandi et al., 2012). IoT involves the 

internet, sensors and machines, giving organisations and people better knowledge 

and control of almost all the environments including objects that are still not 

accessible through the internet. In this manner, individuals and businesses are 

enabled to be progressively associated with their general surroundings and 

theoretically to do more relevant work (Boyes et al., 2018; Muthukumar et al., 2019; 

Sarma & Girão, 2009; Shrouf et al., 2014). 

An internet connection is an advantageous thing as it gives everyone all sorts of new 

benefits that were unthinkable before now. For instance, a cellular phone in the early 

80s could only text, yet now it is possible to watch a movie, listen to music or even 

read a book from a smart phone (Aloi et al., 2017; Miorandi et al., 2012; Muthukumar 

et al., 2019). These new “phones” can even do many other incredible things – the 

point is that connecting devices or things to the internet yields numerous 

advantages. Therefore, the IoT essentially implies that taking all the things that can 

be imagined and connecting them to the internet (Chen et al., 2015; Sarma & Girão, 

2009; SRI Consulting Business Intelligence, 2008; Wortmann & Flüchter, 2015). 

When a device is connected to the internet it can only do one of two things or both, 
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and that is sending and/or receiving data. A straightforward case of this idea is with 

smartphones; people can listen to any song on the planet with the cellular phones – 

these songs are stored somewhere on the internet, and the phones can connect to 

the internet and ask for a particular song (Aloi et al., 2017; Jeong et al., 2018). In the 

IoT, all devices that are being connected to the internet can be grouped into three 

classes: devices that gather data and after that send it, devices that receive data and 

then act on it, or devices that do both (Civerchia et al., 2017; Sadeghi et al., 2015; ur 

Rehman et al., 2019; Wortmann & Flüchter, 2015). 

Devices that gather data and transfer it are commonly known as sensors. There are 

different types of sensors such as temperature, motion, air quality, moisture to name 

a few of them (Farrugia, 2011; Zhuiykov, 2012). These sensors, together with a 

connection, make it possible to collect data automatically on the ground which at that 

point allows making reliable business decisions. In mine water treatment plants, 

automatically receiving data about the mine water quality can precisely indicate how 

to treat mine water and what chemicals are needed to be injected to raise the pH 

and precipitate metals (Gilchrist, 2016; Losavio et al., 2019; More & Wolkersdorfer, 

2019; Sun et al., 2012). 

Devices that receive data and act on it are known as machines. There are endless 

examples of this concept such as a vehicle (machine) receiving data from the vehicle 

keys and the doors open, or a network printer receiving a document and printing it 

(Miorandi et al., 2012; Shrouf et al., 2014; Singh et al., 2017b). However, the real 

power of the IoT is when devices can do both, i.e. they can collect and send data 

and also receive and act on it. For example, in farming, the sensors can collect soil 

moisture data, and instead of the farmer watering the crops, the irrigation system can 

turn on automatically with regards to the amount of moisture content in the soil 
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(Sarma & Girão, 2009; Tzounis et al., 2017) until the system gets information to stop 

watering. Irrigation systems can also receive weather data from sensors; therefore, 

during a rainy period the irrigation system can automatically switch off as the rain will 

be watering the crops (Civerchia et al., 2017; Díaz et al., 2016; Gama et al., 2012; 

Miorandi et al., 2012; Sarma & Girão, 2009; Tzounis et al., 2017). 

2.1.2 Fourth Industrial Revolution (Industry 4.0) 

Current industries are experiencing a vast change of technology; from the first 

industrial revolution which involved powering of machines through steam (Deane, 

1979) to the second in which electricity played a major role (Yin et al., 2018). The 

power of internet usage was then introduced in the third industrial revolution and also 

included advancement in computer usage and introduction of automation (Boyes et 

al., 2018; Stock & Seliger, 2016; Yin et al., 2018). Industry 4.0 takes over from the 

industry 3.0, adopting computer usage and automation and support it with smart and 

autonomous systems driven by big data communicating with each other (e.g. Iqbal et 

al., 2017; Lee et al., 2013; Millie et al., 2013; Tekiner & Keane, 2013) and AI or ML 

(e.g. Bonabeau et al., 1999; Corke et al., 1998; Duff et al., 2003). In simpler terms, 

industry 4.0 modifies the computer usage of industry 3.0 (Gilchrist, 2016; Lasi et al., 

2014; Sishi & Telukdarie, 2017; Stock & Seliger, 2016). 

The industry 4.0 refers to the industrial internet of things (IIoT) (Gilchrist, 2016; 

Sadeghi et al., 2015, Figure 2.1), while the IoT, as explained earlier, refers to a 

system of physical things and technologies which consist of software, electronics, 

sensors and connectivity to ensure that the performance is enhanced by sending 

data to other connected devices and vice versa (Lee & Lee, 2015; SRI Consulting 

Business Intelligence, 2008; Wortmann & Flüchter, 2015). However, the IoT is not 

well received in the industry world as compared to the consumer world. The IoT in 
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the industry comes with a number of disadvantages such as nature and levels of 

security and potential disruption of production due to failure of maintenance of the 

technologies (Gilchrist, 2016; Sadeghi et al., 2015). Overcoming the barriers then 

gives birth to the IIoT. This system can be applied in a lot of sectors such as mining, 

water, energy and even the building environment. It comes with several advantages 

such as saving costs, increased production and flexibility in the workplace (Lee & 

Lee, 2015). 

Introduction of computers with their technology during the third industrial revolution 

was a disruptive technology. With the introduction of industry 4.0, these computers 

became connected and communicate with one another to make human decisions 

(Boyes et al., 2018; Gilchrist, 2016; Lasi et al., 2014; Shrouf et al., 2014; Sishi & 

Telukdarie, 2017; Stock & Seliger, 2016; Yin et al., 2018). There is a rise in the 

number of smart factories (e.g. Shrouf et al., 2014), and industry 4.0 is also 

spreading; this is being made possible through a combination of the IoT, cyber-

physical systems and the internet of systems (Gilchrist, 2016; Iqbal et al., 2017; 

Wortmann & Flüchter, 2015). The substantial increase in AI knowledge makes 

machine usage in industries more understandable, and brings positivity and 

production growth in factories. Digital connection of these machines in the industries 

makes it possible for data to be shared easily which is the heart of industry 4.0 

(Civerchia et al., 2017; Lasi et al., 2014; Zuo, 2017). 

A lot of factories are still hung up on industry 2.0 or 3.0 and are not aware that this 

could severely damage their business (Yin et al., 2018). Industry 4.0 comes with 

several advantages such as data collection in previously impractical areas – 

machines are able to collect data that cannot be done by human beings, and can 

also collect this data in areas that are inaccessible by human beings. This data can 
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be used to build a platform which can help with performance, maintenance, and 

analysing the data to identify trends and patterns, and many other issues (Gilchrist, 

2016; Millie et al., 2013; Shrouf et al., 2014; Sishi & Telukdarie, 2017; Tekiner & 

Keane, 2013). A lot of data from sensors saw one of the biggest African gold mines 

solve oxygen concentration problems during leaching. Other advantages of industry 

4.0 include robotic systems which are mainly used for moving goods and eventually 

cut costs, autonomous equipment and vehicles which are now used in mines through 

self-driving trucks and also 3D printing (Boyes et al., 2018; Feldner & Herber, 2018; 

Gilchrist, 2016; Lasi et al., 2014; Shrouf et al., 2014; Sishi & Telukdarie, 2017; Stock 

& Seliger, 2016; Yin et al., 2018). 

 

Figure 2.1: The fourth industrial revolution framework 
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2.1.3 Wireless Sensor Network (WSN) 

Sensor network refers to a spatially distributed group of sensors that monitor and 

record physical or environmental conditions, such as vibrations, pollutants, 

temperature or sound (Figure 2.2). The idea of sensor networks was first introduced 

in the military and it is now widely used, including in healthcare applications, 

industrial process monitoring and applications, environmental monitoring and traffic 

control (Cheng et al., 2008; Farrugia, 2011). They basically gather data for 

monitoring a wide range of parameters. This can be considered an automated data 

collection and control system, i.e. the sensor network consists of a large number of 

sensor nodes, and these nodes are able to gather, process information and 

communicate with other connected nodes in the sensor network (Li et al., 2010). 

The ability of sensor nodes to gather, process and communicate information with 

other connected sensor nodes results from its three functional units (Farrugia, 2011): 

the sensing unit helps in gathering information such as vibrations, motion, 

temperature and sounds, information which is processed through the computational 

unit, and lastly, the information is communicated to the neighbouring sensor node via 

a communication unit (Cheng et al., 2008; Farrugia, 2011; Haenselmann & Müller, 

2011; Li et al., 2010). These nodes constantly gather data which eventually result in 

big data, i.e. extremely large amounts of data that can only be analysed 

computationally to reveal patterns and trends (Millie et al., 2013). 

Tuna et al. (2013) describes a theoretical approach where continuous water 

monitoring was modelled with MATLAB using autonomous buoys and boats on the 

Kirklareli Baraji Dam (Turkey), collecting data, which was transmitted via a wireless 

network. Their proposed autonomous mini boat measured temperature, electrical 

conductivity and nitrate concentrations. A real system was designed, installed and 
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tested by Sun et al. (2016) in a lake near Lamar University, Beaumont (Texas, USA). 

They monitored water temperature, dissolved oxygen and pH values in real-time 

using STORM 3 data loggers, and they used a wireless network to transmit the data 

from the loggers to the server. Based on their studies, they concluded that 

appropriately chosen locations for the network are imperative for a well-functioning 

system. Similar issues with choosing a good location were also eminent when a 

mine water monitoring station (temperature, electrical conductivity, pressure) at the 

Nikolaus-Bader-Schacht in Tyrol (Austria) was installed (pers. comm. Ch. 

Wolkersdorfer). Though the provider’s maps showed a good cell phone connection, 

trees and a narrow valley made finding a good location for the antenna tedious. 

 

Figure 2.2: Example of a sensor network interconnected with the gateway sensor node and 

the server through the internet network. Sensor nodes are represented by different coloured 

circles 
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In the future, wireless sensors will be installed all over the mine to gather flow and 

physico-chemical parameters such as alkalinity, TDS, electrical conductivity, 

temperature, pH, acidity and TSS. This will be advantageous because of accurate 

and precise measurements the sensors will be gathering. 

The core duties of a sensor network are efficient and effective data collection and 

management. There need to always be communication between the sensors and the 

server for data transfer. It is always the case that the data is stored in the sensor 

network and the server retrieves it randomly accessing a few sensor nodes. Sensor 

nodes have no knowledge of what data other nodes are recording; therefore, when 

retrieving data by the server this may result in data replication (Farrugia, 2011), and 

thus RFID tagging systems are important and need to be introduced, similar to the 

RFID project in this thesis. RFID tags can help in identifying and correlating data to 

its specific sensor by tagging the RFID chip and reveal the information. 

2.1.4 Radio Frequency Identification (RFID) 

Radio Frequency Identification (RFID) is a technology that identifies and tracks items 

by using radiated and reflected radio frequency power. Usually, an RFID system 

comprises of a reader and a tag (Glover & Bhatt, 2006; Sweeney, 2010; Wang et al., 

2010; Zhu et al., 2012). An RFID reader is made up of at least one antenna, a radio 

frequency transmitter and a radio frequency receiver (Bhattacharyya et al., 2010), 

while an RFID tag is an electronic tag consisting of an antenna and a microchip 

(Sweeney, 2010; Wang et al., 2010; Zhu et al., 2012). Both, the tag and reader 

communicate with each other via backscattering which means the reflection of radio 

frequency waves back to their original place (Chaix et al., 2003; Sweeney, 2010; 

Wong et al., 1998), and they utilise the ultra-high frequencies (UHF) from 860 MHz 

to 960 MHz (Dobkin, 2012). 
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RFID tags consists of a small microchip which, depending on the type, usually store 

not more than two KB of data (Kumar et al., 2021). Information from these tags can 

be read from a wide range of distance, e.g. toll roads use an electronic toll collection 

process and the reading distance there is more than three meters. Toll roads or 

clothing stores use RFID technology incorporating cars or cloths embedded with a 

tag while the reading system is near or above the road or the store’s exit location 

and data is exchanged through UHF radio waves (Dobkin, 2012; Glover & Bhatt, 

2006; Gonçalves et al., 2014; Sweeney, 2010; Zhu et al., 2012). Mining work 

clothing can also be incorporated with RFID tags to track employee locations and 

ensure that they are safe (Nanda, 2020). 

RFID systems have been successfully applied in a wide range of areas such as 

healthcare, logistics, transportation, agriculture, manufacturing, and many other 

services (e.g. Kumari et al., 2015; Ngai et al., 2007; Singh et al., 2017b; Sweeney, 

2010; Wang et al., 2010; Zhu et al., 2012), mainly for tracking and identification 

purposes. It can also be used to store important information for products or in 

biometric, electronic passports (Malčík & Drahanský, 2012). In agriculture, RFID tags 

have already been used for tagging vine rootstocks to identify various hybrids for 

scientific investigations (Luvisi et al., 2014) and an RFID tag was developed for the 

tracking of a tracer injection probe (pers. comm. Ch. Wolkersdorfer). A future 

technology, which was developed in this thesis, relates to an application in mine 

water sampling. Currently, the sample bottles are labelled at the sampling location 

and recorded in the field book. However, the sample bottles could get wet during the 

process and it would be difficult to write on them. In addition, the process is time-

consuming, and during transport the marking or a sticker may smear or scratch. With 

water sample bottles incorporated with RFID technology, the analysis of mine water 
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is faster and smoother. This thesis demonstrates a RFID-related project in which a 

microchip is incorporated in a plastic bottle using an RFID application to store 

relevant information such as sampling location, time and date. 

2.1.5 Big data 

Receiving extremely large amounts of data, with steadily increasing volume and very 

high speed is termed big data. Big data is more complex datasets, extremely large 

amounts of data, particularly from new data sources (Figure 2.3; Chen et al., 2014; 

Jifa & Lingling, 2014). Using state of the art technology and big data helps to deal 

with business problems that were difficult to solve in the past. Big data often consists 

of unstructured data that needs to be processed, such as data from equipment that 

is embedded with sensors (e.g. Zhuiykov, 2012), social media feeds such as Twitter 

or Facebook data feeds (e.g. Yang et al., 2015), or a mobile application (e.g. Aloi et 

al., 2017). This is not just large data, but it can be hundreds of Exabyte of data (Millie 

et al., 2013; Zikopoulos & Eaton, 2011). Furthermore, the increasing understanding 

of big data enables to process more unstructured data which can be in the form of 

video, text or audio. Additionally, the speed at which big data is received and 

processed is crucial. In this context, speed refers to the rate at which data is 

received and acted on (Gandomi & Haider, 2015; Lee et al., 2013). With the rise of 

IoT, products operate in real time, and in most cases this requires real time action 

and evaluation (Iqbal et al., 2017; Lee et al., 2013; Singh et al., 2017b; Zhuiykov, 

2012; Zikopoulos & Eaton, 2011). 

Data has essential value; however, it is useless until that value is found. It is also 

important to know how real data is and if processes would depend on it. Talk about 

big data means talking about money which is largely visible in the presently biggest 

technology companies (Gandomi & Haider, 2015; Jifa & Lingling, 2014; Lee et al., 
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2013; ur Rehman et al., 2019). These companies generate large amounts of money 

from their data as they continually analyse this data to increase productivity and 

create new products. Technological advancement has made the storage of data 

easier and cheaper. Therefore, this enables a lot of companies to expand their 

business by having big data at their disposal and effortlessly enables them to make 

more accurate business decisions (Jifa & Lingling, 2014; ur Rehman et al., 2019; 

Zikopoulos & Eaton, 2011). 

Twitter and Facebook use big data to possibly give them relevant information about 

its users which they use to improve their marketing techniques and eventually attract 

more users (Yang et al., 2015; Zikopoulos & Eaton, 2011). Companies using big 

data are more advantageous and have the potential to outgrow the ones that do not 

use it because they have the ability to make quick and more informed business 

decisions. Besides, using big data enables organisations to focus on providing a 

positive customer experience. 

Computer infrastructure that is currently used imposes serious difficulties in handling 

big data resulting in the rise of quantum computing (section 2.1.6) over the past 

years (Ikeda, 2018; Tabakin, 2017). Organisations find it difficult to reach the 

required speed when processing big data decreasing their productivity. In most 

cases, power required to process big data can easily result in server breakdown 

(Chen et al., 2014; Gandomi & Haider, 2015; Tekiner & Keane, 2013; ur Rehman et 

al., 2019; Zikopoulos & Eaton, 2011). Therefore, companies invest in quantum 

computing and cloud storage for big data tasks (Chen et al., 2014; Gandomi & 

Haider, 2015; Ikeda, 2018; Iqbal et al., 2017; Lee et al., 2013; Millie et al., 2013; 

Ruparelia, 2016; Tabakin, 2017). 
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Figure 2.3: Components of big data 

2.1.6 Quantum computing 

As the technology advances, computers are drastically changing pushing for suitable 

hardware usage. In spite of the fact that more and more computers are becoming 

small and more powerful, most normal or classical computers are limited 

(Bandyopadhyay, 2005; McCaskey et al., 2018). Quantum computers are seen as a 

solution to problems that classical computing cannot solve. In general, classical 

computers consist of various components such as control unit, arithmetic unit, main 

memory and many other parts (McCaskey et al., 2018). They perform a lot of 

functions through these components, such as controlling, representation and 

processing of data. A computer contains small computers in it, referred to as logic 

gates (DiVincenzo & Loss, 1999; Tabakin, 2017). Their main responsibility is to 

produce an output by reading an input. Within a computer, other computer modules 
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consisting of groups of electronic circuits, such as transistors, act as an information 

transporter and either permit or deny data to go through it (Biham et al., 2004; 

Häffner et al., 2008). 

Computer parts are getting smaller enforcing them to operate sometimes more 

slowly and thus hindering technological advancement. This normally occurs because 

transistors are getting too small not blocking all the data; therefore, electrons find a 

passage referred to as quantum tunnelling (Freedman et al., 2002; McCaskey et al., 

2018; Tabakin, 2017). Computers are based on a binary base 2 numerical 

framework using 0 and 1 as bits. A bit is one unit of information in a computer 

(Biham et al., 2004; DiVincenzo & Loss, 1999; Häffner et al., 2008; McCaskey et al., 

2018; Tabakin, 2017). More complex information and situations are represented 

through a combination of these bits. 

A quantum bit, also referred to as qubit (e.g. DiVincenzo & Loss, 1999; Häffner et al., 

2008; Tabakin, 2017), is used in quantum computing which are quantum systems 

with two different states existing in any superposition of bit values, 0 and 1 

(Freedman et al., 2002; Ikeda, 2018; McCaskey et al., 2018; Tabakin, 2017). Due to 

this ability, they can store substantially more data than just 0 and 1. The 

superposition in quantum computing enables computers to analyse and interpret 

more complex data than a classical computer (e.g. De Wolf, 2017). Therefore, 

quantum computing implies the storing, analysing and processing of big data using 

photons, electrons or atoms independently which increases the probability of faster 

computers (Bandyopadhyay, 2005; Biham et al., 2004; DiVincenzo & Loss, 1999; 

Freedman et al., 2002; Häffner et al., 2008; Ikeda, 2018; McCaskey et al., 2018; 

Tabakin, 2017). 
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Big companies such as Google, IBM and Microsoft are currently running quantum 

computing tests expected to quickly sweep the world in the mid to late 2020s. By 

then, classical computers will be outperformed by quantum computers in many tasks 

such as financial, molecular and material modelling, cryptography, or other big data 

tasks (De Wolf, 2017). One of the reasons is that quantum computers use algorithms 

that enable them to perform tasks in seconds that would take classical computers 

years to perform (DiVincenzo & Loss, 1999; Häffner et al., 2008; McCaskey et al., 

2018; Tabakin, 2017). 

2.1.7 Swarm intelligence (SI) 

Swarm intelligence (SI) is a branch of AI which provides possibilities of exploring 

collective or distributed ideas or problem solving without having to resort to a 

centralised control unit. It studies and focuses largely on the interactions of 

individuals and their environment, which can be natural or artificial systems 

(Bonabeau et al., 1999; Karaboga & Akay, 2009; Walters, 2011). Examples of 

natural SI systems include swarms of bees, herds of land animals, flock of birds, 

school of fish, to name a few; and artificial SI systems can be seen in industries 

through multi-robotic systems and certain computer programs such as plagiarism 

checkers and modelling software (Bonabeau et al., 1999; Huang & Liu, 2009; 

Karaboga & Akay, 2009; Krause et al., 2010; Walters, 2011). 

A number of mines already use swarming drones to gather large quantities of data. 

Swarming drones are a fleet of drones that operate together and can make decisions 

based on information gathered by one, many or all the drones contributing to the 

swarm (Tahir et al., 2019). They originate from military research seeking to reduce 

the loss of soldiers and equipment in warfare (Lachow, 2017), using a technique 

allowing them to evaluate collective problem solving without having any centralised 
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control (Bonabeau et al., 1999). Aerial photography, surveillance, site mapping and 

infrastructure inspection are some of the areas where swarming drones are already 

incorporated (Danilov et al., 2015; Micklethwaite, 2018; Otto et al., 2018). 

This data collection method is highly preferred as compared to collecting data by 

using helicopters because these swarming drones are cheaper to use, faster, can 

collect data in large quantities and are highly reliable (Micklethwaite, 2018). Some 

areas on the mine site might not be accessible with self-driving trucks, and therefore, 

mining companies use drones in such areas to gather data. Another key point with 

drones is that they have cameras and they can take images and videos while 

collecting data. This camera feature enables specialised software to create 3D 

models of the mine site, their infrastructure and open pits (Danilov et al., 2015; 

Micklethwaite, 2018; Otto et al., 2018). Therefore, drones and swarming drones 

substantially contribute to time saving and costs cutting as opposed to creating 3D 

models using ground-based lasers or surveyors. 

Some of the drones are even operating with embedded sensors which are utilised for 

mine water management, e.g. at Century Mine in northern Queensland, Australia, 

where sensor embedded drones were used to identify pyrite oxidation in subsurface 

rocks (Micklethwaite, 2018). At the Hannukainen mining development site, Northern 

Finland, Rautio et al. (2017) used UAVs and TIR to investigate groundwater-surface 

water interactions that might be relevant for the final mine design. The same 

technique was used to support the mine development of the Sakatti mine site, also in 

Northern Finland (pers. comm. V. Salonen). 
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2.1.8 Artificial intelligence (AI)  

Artificial intelligence (AI) drives the decision-making in a lot of industries (Chau, 

2006; Sakizadeh, 2015). They utilise smart data and ML to enhance the efficiency in 

operations, safety at the mine and workflow in production (Bonabeau et al., 1999; 

Diamantopoulou, 2005; Singh et al., 2009; Zuo, 2017). Using AI technology in the 

mines ensures that data are processed faster than the current data processing 

methods. As the mining industry changes and grows, AI and ML influence the future 

choices of today’s mines. For example, AI is used in economic geology, to optimise 

the mineral exploration process (Zuo, 2017). It is also used in machine autonomous 

vehicles, e.g. in narrow mine tunnels where self-driving trucks require AI technology 

for easy navigation (Park & Choi, 2020). AI technology also helps to ensure the 

safety of the miners and improves the safety of mining workplaces and the 

environment in general. 

Introducing this technology in mine water management should be in the form of 

computational modelling, the knowledge driven algorithms which are the computer 

programs that utilises expert systems and fuzzy concepts to make decisions (e.g. 

Chau, 2006; More & Wolkersdorfer, 2022; Rooki et al., 2011; Sakala et al., 2019; 

Sakizadeh, 2015). Main tools used in ML to predict and forecast mine water quality 

are the artificial neural networks (ANN) which are computational models consisting of 

processing elements which receive input data and immediately produce an output. 

For instance, Maier et al. (2004) used ANN to model aluminium dosage and 

eventually predict the residual aluminium concentrations and pH values in southern 

Australian surface waters. 
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2.2 Mining Technology and Mine Water Treatment Plants 

2.2.1 Background 

Currently, mining industry is confronted with many challenges such as low 

commodity prices, increasing cost of electricity and production or pressures from 

NGOs to provide fast and useful monitoring data. These are driving the mining sector 

to Industry 4.0, as it brings the industrial transformation. Implementation of these 

new technologies drives an increase in skills demand, meaning that more jobs are 

and still will be created (Olalekan et al., 2016). As much as these technologies will 

not change basic mining principles, using electricity and mechanics, the mine 

workers will communicate with their equipment through the IoT (Lee & Lee, 2015; 

Sishi & Telukdarie, 2017; Stock & Seliger, 2016), and some might call themselves IT 

experts in the future. This thesis emphasises that upgrading mines to Industry 4.0 

will not affect employment negatively, as this is the fear of almost everyone 

(Azevedo & Almeida, 2011; Garetti & Taisch, 2012; Shrouf et al., 2014). On the 

contrary, as other industries have shown, it will create jobs, many of them needing 

higher qualifications, and requesting better education. Some of these adjustments 

can already be seen in mines in Ghana, Chile, USA, Finland and Australia. 

Mine water treatment branches must start embracing the advantages that come with 

Industry 4.0. These technologies will allow “smooth” reactions to changing water 

qualities or quantities in the mine, and enables the mine to not only know that the 

pump has stopped, but to also know why, meaning that the pump, its control 

systems and motor will have to be connected to a network that will allow the operator 

to know all relevant data (Ghodrati et al., 2015; Iarovyi et al., 2016; Stock & Seliger, 

2016; Zuehlke, 2010). Ideally, the system will even predict when the pump is going 

to stop. New skills that will be brought by this interruptive improvement, includes 
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configuring wireless devices, setting up networks or knowledge on internet protocols. 

Therefore, this technological advancement will benefit the mining sector as a whole. 

In this thesis, Industry 4.0 is defined as IIoT (Boyes et al., 2018; Gilchrist, 2016; 

Sadeghi et al., 2015) with the influence of cloud computing or cloud-based systems 

(Ruparelia, 2016; Sun et al., 2012). It will increase the safety and security on the 

mine site, will enable the mines to reach full production (Sadeghi et al., 2015) and 

optimise mine water management. With a data lake in the picture, communication 

between all the departments in the mine that deal with water will become faster, 

easier and more reliable (Lee et al., 2013; Millie et al., 2013; Tekiner & Keane, 

2013). 

In some areas of the mining sector, falling productivity is highly notable, partly due to 

lower commodity prices and lower grade ore deposits, which can be prevented with 

the adaptation of Industry 4.0. A combination of technologies, production, 

communication and information that already can be seen in some of the mines (e.g. 

Kansake et al., 2019; Lacey et al., 2019) is what the rest of the mines should be 

investing in, respectively investing in the future of their mines. It is important to have 

real-time data in modern mine water management to ensure that good and valuable 

business decision making becomes normality (Sishi & Telukdarie, 2017) in a world 

where water management becomes increasingly important. 

2.2.2 The aging technology in the mines – Data Silos 

Outdated technology in numerous mines is highly disadvantageous to their 

production. These old systems are time consuming, slow in data capturing and 

processing, they do not have user-friendly environments, are less accurate when 

compared to advanced computer processing, and have need for a lot of paper work. 

During field work, data is commonly written into a field book, which might result in 
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confusion for later, when information is assembled and data is not managed properly 

because of this old technology. Several industries, including the mining industry, still 

work through “data silos”. A data silo can be considered as a group of raw data that 

can only be administered or controlled by one department and is isolated from the 

rest of the organisation or other departments (Tekiner & Keane, 2013), often to keep 

secrets or exclude others from getting overall insights. Figuratively speaking, data 

silos are the electronic safes of modern times and are, therefore, preventing efficient 

development on site. For example, a mine site consists of various departments (e.g. 

the mine, processing plant, treatment plant, tailings facilities), which are not always 

communicating with each other in terms of data sharing, resulting in a data silo style 

of data management. 

Data silos come with many disadvantages such as difficulties in analysing the data, 

i.e. data may sometimes be stored in formats that are inconsistent with one another 

resulting in time consuming standardisation of data and compilation into appropriate 

formats before it can be used (Gallego et al., 2015; Tekiner & Keane, 2013). Varying 

levels of security and data duplication is also caused by data silos (Beesley et al., 

2009; Gallego et al., 2015; Tekiner & Keane, 2013). Therefore, this data handling 

practice needs to be stopped and a free flow of data and communication across the 

mine site departments implemented instead. 

With the emerging technologies, some of the mines are moving into more 

comprehensive solutions for data management, i.e. all the mine departments will 

transfer the data into a single data retrieving and management system (e.g. Jacobs 

& Webber-Youngman, 2017). This is known as either “data warehouse” or “data 

lake”, which is a data storage facility for the company on which multiple functions can 

be performed on such as real-time data management, on-premises data 
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management, data analytics and also goes as far as using the data for ML (Figure 

2.4; Gorelik, 2019; Herman et al., 2018). Simplified, a data warehouse stores, 

processes and analyses data in an organised structure, while a data lake holds raw 

or unstructured data of various types, and processes and analyses this data at the 

time of usage (Gorelik, 2019). One of the first integrated mine management systems 

having been invented was Al.Vis from the German company Wismut GmbH in 

2003/2004 (pers. comm. M. Haase). This resulted in an easier data management on 

their mine sites and helped to improve the effectiveness of the water and site 

management processes. 

 

Figure 2.4: Data lake development on the mine site for free flow of data 

One of the reasons why the industry still uses the old technology is because it is 

cheap; they do not want to pay high prices for the new and smart technology though 
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it will save costs in the long run as opposed to the cheaper technology that costs the 

companies millions every minute. With the current system, it is often difficult to get 

access to data at anytime and anywhere or conduct data verification or consistency 

testing. In this case, cloud storage can be used to store large amounts of data and 

for easy accessibility of this information, resulting in an optimised working 

environment. The old technology brings a lot of inactivity in the industry and does not 

spark the brain to reach the industry’s full potential (Athresh et al., 2017; Chadwick, 

2016; Ghose, 2009; Jacobs & Webber-Youngman, 2017; Lacey et al., 2019). 

2.2.3 Why the Internet of Mine Water (IoMW)? 

Internet of Mine Water (IoMW) as introduced by Wolkersdorfer (2013) is all about 

integrating disruptive technologies on the mine site. Recent technologies in mining 

show a convincing industry shift towards sustainability. These new technologies 

allow the mines to reach full production, and tackle problems such as acid mine 

drainage. There is little progress of implementation of these technologies for mine 

water management; however, other mining departments are experiencing good 

technology advancement through the implementation of AI (e.g. Bonabeau et al., 

1999; Corke et al., 1998; Duff et al., 2003; Grehl et al., 2018; Sadeghi et al., 2015; 

Zuo, 2017), SI (e.g. Bonabeau et al., 1999; Danilov et al., 2015; Micklethwaite, 2018; 

Otto et al., 2018; Walters, 2011) and WSN (e.g. Agrawal et al., 2019; Farrugia, 2011; 

Haenselmann & Müller, 2011; Li et al., 2010; Losavio et al., 2019; Zhuiykov, 2012). 

Additional technologies are still to be implemented and they will surely disrupt and 

slowly replace the existing technologies. 

IoMW will link all the mining departments together to improve the techniques used to 

extract ore and treat mine water. It will help in innovative ways of storing and 

managing data: this will result in better business decision making due to AI and ML 
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which analyses this data and builds business patterns and trends. Consequently, the 

application of IoMW increases operational efficiency and reduces costs. Big data 

collected by WSN, AI and ML during exploration phase can vastly reduce operational 

costs by avoiding trial and errors that humans would cause. 

Introducing these disruptive technologies in the mines will create smart mines, and 

thus the IoMW is the mining IIoT. IoMW incorporates the 4th industrial revolution to 

increase adaptability, visualisation and predictability. This is a connected chain of 

systems, machines and processes that enables autonomous control on the mine 

site. IoMW enables real time data monitoring and sharing, ensures that mine water is 

treated and managed efficiently, reduces energy consumption and deals with safety 

concerns especially in underground mines. 

2.2.4 Failing mine water treatment and management plans 

Quality and quantity of mine water on the mine site and the surroundings is highly 

influenced by mining activities which drastically changes the hydrogeological, 

hydrological and topographical conditions of the area. Water management plans are 

a challenging factor in the mines worldwide: in areas with excessive water, the 

challenging factors are too much water on the mine site and mine water quality and 

in drought stricken areas they have less water issues and mine water quality 

problems on the mine site (Hancock & Wolkersdorfer, 2012; Wolkersdorfer, 2008; 

Younger et al., 2002). Too much or lack of water can both cause problems on the 

mining operations and the surrounding environment. Lack of proper mine water 

balance models might result in AMD issues (Bhakdisongkhram et al., 2007; Côte et 

al., 2010; Kalin, 2004; Kolhinen et al., 2017). Therefore, water management and 

modelling skills must be improved in mines, continuous online data collection and 

monitoring for both water quality and quantity must be improved, and free-flow of 
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data must then be introduced, i.e. linking all mine site departments, thus the 

development of IoMW. 

A proper planning and development of the mine water balance can be beneficial to 

the mine. This can cut costs of treating and managing mine water, e.g. a good water 

balance gives room for proper diversion of different water types and water might be 

re-used for other mining purposes (Bhakdisongkhram et al., 2007; Côte et al., 2010; 

Gao et al., 2014; Kolhinen et al., 2017). Therefore, the mine could then become 

socially acceptable when it has excellent environmental performance. Process of 

managing mine water is a continuous one and changes throughout the mine life 

cycle which commonly is referred to as longevity of mine water (Asr et al., 2019). 

Data needs to be collected and updated continuously; therefore, increasing the need 

of smart technologies on the mine site to collect data and develop water quality and 

quantity predictive models (Bhakdisongkhram et al., 2007; Côte et al., 2010; Losavio 

et al., 2019; More & Wolkersdorfer, 2019; Nalecki & Gowan, 2008; Younger et al., 

2002). This might result in an end of the stereotypical mine water treatment 

techniques and the use of old technologies. 

Application of modelling software, especially AI techniques, must be made 

fashionable to replace old spreadsheet-based techniques. Such modelling software 

are useful and provide good predictive and forecasting models and they can lead to 

successful mine water management. Spreadsheet-based techniques, on the other 

hand, are disadvantageous as they cannot handle more complex modelling or be 

coupled with hydrogeochemical software tools to build accurate mine water models. 
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2.3 Developing Artificial Intelligence Systems (Algorithms used in 
this thesis) 

2.3.1 Background 

AI includes making use of computers to perform functions that normally requires 

human intervention which implies developing calculations or algorithms to 

characterise, analyse and make decisions from data (Russell & Norvig, 2002; 

Wolfgang, 2011). It additionally involves performing functions on given data, learning 

from new data and sometimes improve it over time (Negnevitsky, 2005). Unlike 

many other programs that characterise every conceivable situation and only operate 

within those characterised situations, AI trains a program for a particular task and 

allows it to explore and improves on its own (Negnevitsky, 2005; Russell & Norvig, 

2002; Wolfgang, 2011). AI systems operate on large data so they are able to learn 

from it, improve scenarios and make better decisions (e.g. Khandelwal & Singh, 

2005; Rooki et al., 2011; Singh et al., 2009; Wolfgang, 2011). AI has multiple 

branches which include ML, expert systems, speech, robotics, to name a few (Figure 

2.5), whereupon this thesis will use ML (Figure 2.6). 
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Figure 2.5: Simplified branches of Artificial Intelligence (modified after Sutton et al., 2016) 
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Figure 2.6: Machine learning algorithms; k: the number of clusters from the supplied data, SVM: support vector machine, DBSCAN: density-

based spatial clustering of applications with noise
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2.3.2 Random forest 

Random forest, proposed by Breiman in the early 2000s (Breiman, 2001), is one of 

the supervised ML algorithms which makes use of ensemble learning to perform 

either classification or regression tasks. In this study, random forest regression will 

be explored. Random forest is built on the concept of decision trees algorithm 

(Figure 2.7; Boulesteix et al., 2012). Decision trees are an ML algorithm where the 

data are repeatedly split according to a certain parameter. The trees consist of 

decision nodes where the data are split and leaves where the final outcomes and 

decisions are made. Since the focus is on random forest regressor, regression trees 

will be used to build random forest models (e.g. Belgiu & Drăguţ, 2016; Chen et al., 

2020; Singh et al., 2017a). Random forests are operated by building multiple 

decision trees at training time and give a mean prediction of the individual trees. 

During training time, the trees are run in parallel and do not interact with each other 

(Biau & Scornet, 2016; Breiman, 2001). 

Random forests applies a technique known as “bagging” (Sexton & Laake, 2009). 

This technique is used to reduce the variance for algorithms that mainly have high 

variance, such as decision trees. Bagging enables random forests to make decision 

trees run independently and ultimately aggregates the outputs to give the final output 

without preferring one model over the other. Two modifications are made when 

aggregating the results of multiple predictions from several decision trees; for 

random forest models to not depend largely on individual features, the number of 

features that can be split on at every single node is limited to a hyper-parameter, 

which is the total percentage of prediction. Another modification is the prevention of 

overfitting through random sample selection from the original dataset by the decision 
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tree when its splits are generated (Biau & Scornet, 2016; Breiman, 2001; Sexton & 

Laake, 2009). These modifications help in preventing over-correlation of the trees. 

 

Figure 2.7: Random forest structure (modified after Araya et al., 2017) 

2.3.3 Artificial Neural Network System 

Artificial neural network (ANN), which is part of the ML branch, is a data-driven 

system. Data-driven ANN systems work with known input data without any 

assumptions (Negnevitsky, 2005; Palani et al., 2008; Singh et al., 2009; Wolfgang, 

2011). It can conclude on meaningful and workable data relationships that can be 

utilised to give output data when only input data are presented (e.g. 

Diamantopoulou, 2005; Khandelwal & Singh, 2005; Maier et al., 2004; Palani et al., 

2008; Rooki et al., 2011; Singh et al., 2009). ANNs are one of the many tools applied 

in AI. The “neural” part of their name implies that they are brain-inspired systems 
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designed to perform what humans can do as elaborated by Russell and Norvig 

(2002). Neural networks are made up of (i) an input layer, where the data are initially 

presented to the model and computation is performed, (ii) a hidden layer, where the 

ANN model data are processed, and (iii) an output layer, where the results of the 

ANN model are produced (Figure 2.8; Russell & Norvig, 2002; Wolfgang, 2011). 

 

Figure 2.8: ANN structure; f(x): equations 

Each layer in this ANN structure consists of at least one basic element which can be 

referred to as a neuron. In this context, a neuron is defined as a non-linear algebraic 

function (Negnevitsky, 2005; Wolfgang, 2011). Selecting the number of neurons to 

use in the hidden layer is important as a larger number may result in model over-

fitting while a smaller number can lead to data not being properly captured (Yuan et 

al., 2003). ANN systems are widely utilised for finding complex patterns for humans 

to extract and apply the knowledge to a machine to recognise. Many modelling 

techniques are disadvantageous because of only dealing with linear relationships. 

ANN can be a useful computational technique, as it can also model complex non-

linear relationships (e.g. Bui et al., 2020a; Diamantopoulou, 2005; Maier et al., 2004; 

Palani et al., 2008; Sakizadeh, 2015). 
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2.3.4 Gradient boosting regression tree 

Gradient boost algorithm is a technique, similar to random forest, which uses an 

ensemble or decision trees to predict a target label. With random forest focusing on 

reducing the variance on complex trees, gradient boosting’s main aim is to decrease 

the bias of simple trees and make them more expressive (Johnson et al., 2017; 

Zhang & Haghani, 2015). This technique optimises the predictive value of a model 

over multiple steps in the learning process. Each iteration process of the decision 

tree (Figure 2.9) aims in adjusting the values of the weights, coefficients or biases for 

each input variable used to build the model to predict the target value, with the main 

goal being to reduce the loss function, i.e. the difference between the predicted and 

actual target values (Cai et al., 2020; Li & Bai, 2016). The incremental adjustment 

made in each step of the model is the gradient, while boosting can be referred to as 

the activity of speeding up the improvement in predictive accuracy to a desired 

value. 

 

Figure 2.9: Gradient boosting tree structure (modified after Zhang et al., 2018) 
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2.4 Other algorithms for predictive analysis 

2.4.1 Decision tree regression 

Decision tree is a supervised machine learning model which is used to predict a 

target variable by learning decision rules from associated features. This algorithm 

consists of a parent node which is divided into child nodes. Furthermore, the child 

nodes are divided into decision nodes to create branches, and the bottom nodes of 

the tree are known as terminal or leaf nodes (Figure 2.10). 

Decision tree can be applied in both continuous and classification target variable 

prediction. Decision tree regression is used to predict the target variable whose 

values are continuous in nature. It is a flexible algorithm that can be considered for a 

wide range of applications. Hamoud (2016) used decision tree algorithm to classify 

and predict the willingness of students to enrol and complete higher education 

qualification after completing secondary school. This algorithm was also applied in 

the health sector by Romero et al. (2020) to help in controlling bovine tuberculosis 

disease. Decision trees are mostly favoured in regression problems because of their 

ability to exhaust all possible scenarios that can potentially influence decision 

making. Additionally, the output of decision tree algorithms is easy to read and 

interpret without having to use robust statistical methods, and thus it is the “go to” 

algorithm for regression problems. The mechanism of decision tree algorithm is 

about making decisions along the way to narrow down the possible values in order to 

tune the model until it gets confident enough to compute the final prediction (Figure 

2.10). The decisions made are all in a True or False form. 
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Figure 2.10: Decision tree algorithm structure and its mechanism (modified and 

supplemented after Wagner et al., 2019) 

2.4.2 Linear regression 

Linear regression is s statistical model that aims to show the relationship between 

two variables through a linear equation, i.e. the algorithm aims to find the relationship 

between variables x and y. This means that every value of x has one corresponding 

value of y if the data are continuous. Linear regression algorithm can be used in 

several applications such as evaluating trends and sales estimates or analysing the 

effect of price changes in businesses (e.g. Ghosalkar & Dhage, 2018), forecasting 

the daily behaviour of stock markets (e.g. Bhuriya et al., 2017) or in the energy 

sector (e.g. Ighalo et al., 2020). 
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In linear regression algorithm, the relationship between the independent and 

dependent variables is shown by a line of regression, mathematically known as the 

‘y = mx + c’ line (Figure 2.11). This line can either show a positive or negative 

relationship. In case of a positive relationship, the independent and the dependent 

variable increases. When the independent variable increases and the dependent 

variable decrease, the resulting relationship is negative. 

 

Figure 2.11: Linear regression visualisation 

2.4.3 Fuzzy Expert System 

Fuzzy optimisation is a technique on which reasoning that resembles human 

reasoning is involved. This method is much more similar to how experts perform 

decision making. It brings together all the intermediate possibilities between “yes” 

and “no”, e.g. for the question of “is it hot?” a Boolean logic would provide “yes” or 

“no” as an answer, but fuzzy logic would give answers such as “very hot”, “a little 

hot” or “very less hot”. Fuzzy logic was made popular by Zadeh (1965), who coined 

the technique as one of the first approaches to AI. This technique is used for both 

commercial and practical purposes, from controlling machines to consumer products, 
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and its reasoning is not always accurate but acceptable. Fuzzy logic consists of a 

variable name, set of terms, universe of discourse, syntax rules and semantic rules 

(Figure 2.12; Buckley & Eslami, 2002). 

 

Figure 2.12: Fuzzy logic example for predicting mine water quality 

In fuzzy systems, a linguistic variable is a classical set, A, which is the set of variable 

x such that x comes from the universe of discourse X: 

 A = [x|x ∈ X] 2.1 

And a fuzzy set can be given by: 

 Afuzzy= [x, µ
A

(x)|x ∈ X, µ
A

(x) ∈(0; 1)]  2.2 

where µA refers to the fuzzy membership function (FMF). The FMF quantifies the 

degree of the state of belonging of x to A. Since A is a linguistic variable, its meaning 

can be modified. 
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The implementation of knowledge-driven expert systems involves solving problems 

that are normally solved by human expertise. It requires understanding, substantial 

knowledge base, a reliable inference engine and an efficient user interface to solve 

problems related to work it is designed for by interacting with users (Figure 2.13). 

This system acquires substantial knowledge from the human expertise through the 

knowledge acquisition process (Chen & Pham, 2001; Cornelius, 1998; Siler & 

Buckley, 2005). 

 

Figure 2.13: Overview of an expert system 

A fuzzy expert system is a form of an AI that involves a set of fuzzified inference 

rules and formulating computer-based systems to solve the problems related to work 
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it is designed for (Siler & Buckley, 2005). The fuzziness came about because of the 

uncertainty and imprecisions that were encountered in certain situations and 

negatively affected decision making capability. Fuzzy reasoning technique based on 

the Mamdani fuzzy inference method is widely used in several applications (e.g. Deb 

et al., 2008; Mahapatra et al., 2011; Nasr et al., 2012). 

Mine water quality is commonly classified based on chemical, physical and biological 

indicators, and these include pH, redox potential, electrical conductivity, water 

temperature, air temperature, oxygen saturation, water level, biological oxygen, 

metal concentrations and total hardness (Wolkersdorfer, 2008). However, decisions 

on mine water quality cannot be reached by just using “crisp” datasets. Therefore, a 

fuzzy expert system makes it more understandable to consider mine water quality 

data as a fuzzy set (Figure 2.15), which makes it easy to express the term quality in 

a linguistic manner, e.g. poor, medium or good (e.g. Deb et al., 2008; Liu et al., 

2019; Mahapatra et al., 2011; Nasr et al., 2012; Sahu et al., 2011). Values ranging 

from 0 (worst water quality) to 100 (best water quality) are mainly used to express 

the deffuzified water quality (Chen & Pham, 2001; Cornelius, 1998; Siler & Buckley, 

2005). 

The goal with fuzzy expert modelling is to make a machine understand the 

developed algorithms so it can work as an autonomous system without an expert’s 

intervention and make decisions on its own. Fuzzy logic is a process in which a 

vague statement or data can be quantified so that the information can be well 

understood. So, the need to develop fuzzy logic models result from current 

computers being able to manipulate only precise facts defined numerically. Four 

components are used to build the model: fuzzifier, inference engine, defuzzifier, and 

fuzzy knowledge base which is connected to the inference engine (Figure 2.14). 
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Figure 2.14: A more generalised fuzzy expert system model 

Input parameters go through the fuzzifier, and the defuzzifier produces an output. In 

this case, the crisp inputs and output are non-fuzzy numbers limited to a specific 

range. Fuzzification process is performed in the fuzzifier, i.e. transforming a crisp set 

to fuzzy membership values (FMV) that form the fuzzy membership function (FMF), 

while the defuzzifier converts the fuzzy output of the inference engine to crisp value. 

Fuzzy inference engine, which can be regarded as the “brain” of an expert system, is 

the main part of a fuzzy logic system with decision making as its primary work. Fuzzy 

output is computed in the inference engine by combining all the FMV for all the input 

layers with fuzzy rules. It uses several rules and connectors such as the “IF-THEN” 

rules along with “OR”, “AND”, “SUM”, “PRODUCT” or “GAMMA” connectors (Figure 

2.15). Some of the common fuzzy operators are as follows: 

The AND operator which is the minimum of the truth values is given by: 
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 μ
AND

= MIN(μ
A
,μ

B
,…, μ

n
) 2.3 

where the µ refers to the FMF. 

The OR operator which is the maximum of the truth values is given by: 

 μ
OR

= MAX(μ
A
,μ

B
,…, μ

n
) 2.4 

The SUM operator which combines the FMV to get a larger output result compared 

to the largest contributing FMV is given by: 

 
μ

SUM
=1 – ∏ (1 – μi

n

i=1

) 
2.5 

The PRODUCT operator which combines the FMV to get a smaller output result 

compared to the smallest contributing FMV is given by: 

 
μ

PRODUCT
= ∏ μ

i

n

i=1

 
2.6 

The defuzzifier computes the crisp output variable by converting the fuzzy output 

membership values. 
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Figure 2.15: Example of a fuzzy expert system model for mine water management. O2 Sat: 

Oxygen saturation, O2 Conc: Oxygen concentration, Redox: Redox potential, Temp: Water 

temperature, Fe: Iron concentration, EC: Electrical conductivity, FMV: Fuzzy Membership 

Value 

2.4.4 Hybrid intelligent system 

A hybrid AI system combines at least two AI methods in order to produce a single 

outcome. These systems can combine methods such as, neural networks and fuzzy 

expert systems to name just one possible combination of them. This approach has 

proven to be effective in solving complex problems. Both the fuzzy expert system 

and ANN model have their flaws, e.g. the neural network models do not give 

explanations on how they reach their decisions, and fuzzy expert systems do not 

have the ability to automatically acquire sets of rules on reaching decisions. In 

summary, a fuzzy system is bad in learning ability, while neural networks are not 

good in knowledge representation and explanation ability (Kar et al., 2014). Hybrid 

intelligent systems therefore combine the ability of both the ANN and fuzzy systems 

and can be able to overcome their limitations. On a hybrid system, if ANN can’t 
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perform a certain function, it will be replaced by a fuzzy system to carry out that 

function. 

Combining a neural network with a fuzzy system to produce a heterogeneous hybrid 

neuro-fuzzy system is one of the most common hybrid intelligent systems used in 

predictive analysis problems. Hybrid neuro-fuzzy systems come in different forms, 

however, only the adaptive neuro-fuzzy inference system (ANFIS), a method 

proposed by Jang (1993), produce the most successful results. Its inference system 

corresponds to a set of fuzzy IF-THEN rules and AND operators that have learning 

capability to approximate non-linear functions. It is generally regarded as a universal 

estimator, and uses the learning abilities of a neural network by automatically 

adjusting the membership function in the fuzzy inference system (Chung & Halim, 

2014; Jang, 1993). This model has been applied for many years in the water sector, 

e.g. Nayak et al. (2005) proposed the ANFIS methodology for river flow forecasting, 

Galavi and Shui (2012) used hybrid learning algorithms for water resource 

forecasting, and Sudheer and Mathur (2010) used the methodology for groundwater 

flow detection. 

In terms of the architecture for the ANFIS model, it is made up of five layers with two 

types of nodes, fixed and adaptable. Layer 1 can be referred to as the fuzzification 

layer, layer 2 as the rule layer, layer 3 as the normalisation layer, layer 4 as the 

deffuzification layer and layer 5 as the output layer (Figure 2.16). 
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Figure 2.16: ANFIS architecture (modified after Jang, 1993) 

Layer 1, which contains adaptive nodes, takes the input values and determines the 

membership functions belonging to them. Membership grades of each function are 

generalised by utilising the premise parameter set known as [ai, bi, ci]. Therefore, the 

crisp inputs are converted into fuzzy inputs, and each crisp input has its own group 

of membership functions to which they are converted. Layer 1 is the linear transfer 

function and the outputs are the same with the corresponding inputs. Membership 

function applied in this model is the generalised bell function: 

 
O1,i = μ

Ai
(x) = 

1

1+ |
x – ci

ai
|
2bi

 
2.7 

where O1,i is the output of the ith node in layer 1, x is the input to node i and Ai is a 

linguistic label (vague terms, e.g. low, medium or high) from fuzzy set A.  

Layer 2 is responsible of computing the firing strengths for the rules, e.g. rule 1: if x 

is A1 and y is B1 then f1 will be xp1 + yq1 + r1, and rule 2: if x is A2 and y is B2 then f2 

will be xp2 + yq2 + r2, where p, q and r are the design parameters determined during 

the training process, and f refers to the outputs within the fuzzy region determined by 

the fuzzy rule. Every node in this layer is a fixed node, and the process in this layer 
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is to find out what should be the membership value. The output of every single node 

in this layer is fuzzy AND (product or min): 

 O2,i = Wi = μ
Ai

(x)×μ
Bi

(y); i ∈ (1,2) 2.8 

Layer three’s role is to normalise the computed firing strengths. Every node in this 

layer is a fixed node. Output of the ith node is the ratio of the firing strength of the ith 

rule to the sum of all the rules of the firing strength: 

 
O3,i = Wi

̅̅̅̅  = 
Wi

W1+W2

; i ∈ (1,2) 
2.9 

Layer 4 carries out the task of fuzzy inference. It takes the normalised values as 

inputs and the consequence parameter set. Every node in this layer is an adaptive 

node. The output of each rule is a linear combination of the input variables added by 

a constant value. Therefore, this layer returns the defuzzificated values: 

 O4,i = Wi
̅̅̅̅ fi = Wi

̅̅ ̅̅ (xp
i
 + yq

i
 + ri); i ∈ (1,2) 2.10 

Therefore, the computed values in layer 4 are passed to the last layer to return the 

final output. This layer contains fixed nodes. Lastly, the final output can be 

considered as the weighted average of each rule’s output: 

 
O5,i = ∑ Wi

̅̅̅̅

i

fi = 
∑ Wii fi

∑ Wii

 
2.11 

In the following chapter, methodologies applied in this thesis will be clearly 

explained. Procedures for the radio frequency identification based mine water 

sampling process and protocol, and the application of machine learning 

methodologies will be outlined. The following chapter will give full details of Python 
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programming language (used to develop the machine learning models for this thesis) 

and its libraries.  
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CHAPTER 3 

3 Methodology 

3.1 Introduction 

This section contains a discussion of the different methods applied and sample 

collection procedures taken during the course of the thesis, including mine water 

quality data analysis and interpretation methods. In order to obtain a holistic 

understanding of the observed mine water quality and mine water management, 

different artificial intelligence (AI) methods were applied, including regression 

analysis and neural network algorithms. Furthermore, in order to include chemical 

and physical variation of mine water and the temporal and spatial variation thereof, 

historical data from monitoring networks and geochemical characterisation of the 

study areas were obtained from the mine. The project was implemented in a four-

step case study approach on which different technologies were applied. 

3.2 Method development and phases of the project 

In order to get a proper mine water data analysis, water balance on the mine is 

required. A water balance for a mine site is an accounting for the water flowing into 

the mine from possible sources. After a mine was selected, their mine water 

management was stepwise converted and included in an IoMW system. However, 

some of the phases were not fully completed because of the unavailability of the 

advanced technologies that were supposed to be included in the IoMW system. 

Therefore, the completed phases included setting up an RFID controlled sample 

management and developing AI methodologies (Table 3.1). A project plan was set 

up in conjunction with the mine and all relevant water pathways into and out of the 

treatment plant. In this concept, all water pathways into, through and out of the mine 
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need to be monitored and the data can be used to develop machine learning models 

(Figure 3.1). 

Table 3.1: Completed phases of the thesis 

Case studies 

(thesis phases) 

Location Duration Technologies 

involved 

Expected outcomes 

RFID controlled 

mine water 

sample 

management 

Westrand 

Treatment 

Plant, 

Randfontein, 

South Africa 

13 months NFC (RFID) 

microchip 

attached to the 

mine water 

sampling 

bottle(s). IoT via 

the mobile and 

website 

applications 

Simplified mine water 

sampling. Easy 

recording and storing 

of on-field water 

quality parameters. No 

interchange of data 

and samples during 

data extraction in the 

laboratory. Simplified 

sample identification 

and data extraction 

using NFC mobile 

application. 

Random forest 

and Gradient 

boosting 

algorithms 

modelling 

Eastrand 

Treatment 

Plant, 

Ekurhuleni, 

South Africa 

8 months Artificial 

intelligence 

(machine 

learning) 

Forecasting 

(prediction) of mine 

water quality. Machine 

learning website 

application. 

Neural networks 

(LSTM, ANN 

and DNN) and 

regression trees 

(random forest 

and gradient 

boosting) 

modelling 

Westrand 

Treatment 

Plant, 

Randfontein, 

South Africa 

10 months Artificial 

intelligence 

(machine 

learning) 

Forecasting 

(prediction) of mine 

water quality. 

Application of different 

exploratory data 

analysis techniques. 

Internet of Mine 

Water (IoMW) 

Westrand 

and 

Eastrand 

Treatment 

Plants, 

South Africa 

10 months Artificial 

intelligence 

(machine 

learning), IoT and 

GUI 

Develop the IoMW 

GUI embedded with 

machine learning 

algorithms to perform 

forecasting analysis. 
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Figure 3.1: Relevant steps and their connection in the Internet of Mine Water (IoMW) 

system (from Wolkersdorfer, 2013) 

3.3 Dynamic mine water management 

A dynamic system approach for treating mine water is slowly becoming a norm with 

AI technology and modelling software such as GoldSim, MATLAB, Simulink, 

STELLA, Vensim and PHREEQC being favoured over spreadsheet-based 

approaches. Dynamic modelling is highly useful when the aim is to predict the mine 

water quality and quantity over time, as this was the case in this thesis. Nowadays, it 

is recommended to use dynamic and probabilistic methods when designing a mine 

water management system, which will require a dynamic system modelling package 

that can integrate all possible factors that might affect mine water management 
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(Awuah-Offei & Frimpong, 2011; Nalecki & Gowan, 2008). An AI modelling approach 

was practiced in this thesis and yielded positive results. 

Applying the aforementioned water software and technologies will result in good 

mine water balance development for the whole mine site (George et al., 2009). With 

the wide range of dynamic software, GoldSim is the most used in generating mine 

water balance models, mainly because of its flexibility. Though dynamic models are 

not new and have been around for a long time, they are not utilised in mine water 

management to a degree that would be possible. Dynamic water balance 

calculations include all the mine site departments; therefore, this approach provides 

a highly qualitative tool which can be used to track the system’s performance. 

Dynamic system modelling is helpful because it includes all possible factors 

contributing to the mine water quality and quantity. Shifting to this approach will be 

vital for operating future mines and such consideration will also become important in 

the water sector as shown in this thesis and also elaborated by Kunz and Moran 

(2016). 

3.4 Predictive analysis — Machine learning models and time 
series forecasting 

Anaconda, a Python distribution platform for machine learning (ML), was used to 

develop predictive analysis techniques to predict the future mine water chemistry. 

This included the development of ML models: random forest (section 2.3.2), gradient 

boosting (section 2.3.4), neural networks (section 2.3.3) and long short-term memory 

(LSTM) time series analysis techniques. The aforementioned methods were used to 

build AI systems such as a web application, and applied as the predictive analysis 

method. Predictive analysis is a technique that consists of a variety of statistical 

methods from big data analysis, predictive modelling and ML models that analyse 
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the current and historical patterns and trends to make future predictions (Figure 3.2). 

Historical data is used to build predictive models that capture the important patterns 

and trends. Current data is therefore used on the built predictive models to predict 

the future events. Predictive analysis can be applied in several fields such as 

intelligence gathering and crime analysis (McCue, 2014), the healthcare (e.g. Bos et 

al., 2014), education (e.g. Fernandes et al., 2019) and water sectors (e.g. Arismendy 

et al., 2020). In this thesis, predictive analysis techniques were used to predict future 

mine water chemistry. 

For trained and tested ML models to make their predictions, they must be supplied 

with new data. ML and statistical forecasting techniques were applied to build a time 

series model for the input parameters. ML forecasting is most effective in capturing 

patterns and trends in either well-structured or unstructured dataset. Time series 

refers to the sequence of observations measured in constant time intervals, for 

example, in this study the measurements were taken on a daily basis. Time series 

analysis include building models used to explain the observed time series and 

understand the whole meaning behind its dataset, including the trends and patterns 

(Chatfield, 2000). Time series forecasting uses the best fitting model crucial in 

predicting the future observations using patterns and trends of previous and current 

data. 

When choosing suitable models for time series prediction, it is always crucial to 

understand time-series data components such as: a) seasonality – which will note 

the repeating patterns of cycles of behaviour over time, b) cyclicity – identifying 

repetitive changes in the time series and explain their positioning in the cycle, c) 

trends – which is frequently observed as a linear model; it shows the decreasing and 

increasing behaviour of the time series, and d) anomalies – to detect observations 
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deviating from the time series model (Chatfield, 2000; Zhang, 2003). After several 

tests and data analysis techniques were conducted, LSTM (Figure 3.3) was used to 

forecast the input parameters. 

 

Figure 3.2: Predictive analysis mechanisms 
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Figure 3.3: Long short-term memory network and unit structures (modified after Mei et al., 

2019) 

3.5 Python Libraries used 

Python 3.7.1 programming language was used to develop optimisation techniques or 

ML models (van Rossum, 1991). A more suitable Python distribution platform for ML 

is Anaconda 4.11 (Wang & Oliphant, 2012), which was utilised in this thesis. 

Libraries used to develop the models include Matplotlib 3.5.0, NumPy 1.19.2, 
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Pandas 1.3.1, TensorFlow 2.5.0, Keras 2.4.3, Scikit-learn 0.24.2, Seaborn 0.11.1, 

Statsmodels 0.12.2, Math 2021.2, Pickle 2.0.0, Flask 1.1.2, PyQt 5.9.2, and 

Pyinstaller 4.8. Spyder 5.1.5 was used as the integrated development environment 

software to write all the Python code of this thesis. 

Matplotlib is a two-dimensional plotting library which produces quality figures in a 

variety of hardcopy format and interactive environments across platforms. NumPy 

provides a high performance multi-dimensional array object and tools for working 

with these arrays. Pandas is used for data structures and operations for manipulating 

numerical tables and time-series. TensorFlow is used as a deep learning application 

for fast numerical computing. Keras is a neural network library and acts as an 

interface for the TensorFlow library. Scikit-learn is used to build ML models and 

contains various ready-to-use algorithms such as classification, regression and 

clustering. 

Seaborn is used for data visualisation and is based on the Matplotlib library. 

Statsmodels is a Python package that makes it possible for users to estimate 

statistical models, explore data and conduct statistical tests. The Math module 

enables users to make use of mathematical functions. Pickle is used in serialising 

and de-serialising a Python object structure, i.e. it converts a Python object into a 

byte stream to store it in a database. Flask is a Python module that enables users to 

develop web applications easily. PyQt is a Python binding for Qt designer, which 

consists of C++ libraries and development tools that include platform-independent 

abstractions for the GUI. Pyinstaller is a Python library that is used to convert Python 

files or projects into an executable file that can be used on machines without Python 

or Python’s set packages installed. Pyinstaller is used together with programmes that 
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convert applications to installers, e.g. in this thesis, the Python library was used 

together with the InstallForge programme. 

The following chapter will explain the development and use of the eMetsi application. 

In this chapter, the developed application makes use of radio frequency identification 

technology (RFID) to manage mine water sampling results. eMetsi application 

utilises the information of technology (IoT) techniques to share sampling data in real-

time with the use of near-field communication (NFC) mobile application and a 

website application acting as data cloud storage. 
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CHAPTER 4 

4 eMetsi – RFID Controlled Mine Water Sample 
Management 

4.1 Introduction 

This chapter presents a framework for radio-frequency identification (RFID) 

technology in conjunction with mobile and website applications in mine water 

sampling (eMetsi – which is a Setswana Language meaning electronic water and is 

also an abbreviation for e-Tag based Mine Water Evaluation, Testing, Sampling and 

Identification Application). This application is the first of its kind in the mine water 

sector. RFID is the wireless contactless technology that uses radiated and reflected 

radio frequency waves to transfer data. Embedding items with RFID tags enables 

users to identify and track them (Finkenzeller, 2010; Shepard, 2005). 

RFID is a disruptive technology in a sense that it replaced the two-dimensional 

barcodes (2D QR codes), and has substantially upgraded the automatic identification 

technology (Perret, 2014; Shepard, 2005). Data on the RFID tag can be read without 

line of sight, and some of them have a read range of more than 100 m depending on 

the RFID type (e.g. Qing & Chen, 2007; Sunny et al., 2016; Xianming et al., 2007). 

This technology improves every year and the cost of using it reduces drastically with 

massive improvements, thus gaining traction in different industries. Demiralp et al. 

(2012) shows that using data collection systems that are supported by RFID 

technology can reduce costs and save time. 

RFID systems have several frequency bands, and the most used one are low 

frequency (LF), high frequency (HF) and ultra-high frequency (UHF). With the LF 

spectrum, the general frequency ranges from 30 – 300 kHz, the primary frequency 
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ranges from 125 – 134 kHz, and a read range is up to 10 cm (Shepard, 2005; Sunny 

et al., 2016). It can be applied in sampling bottles, animal tracking, key fobs and 

access control (e.g. Chen et al., 2011; Floyd, 2015; Hasanuzzaman et al., 2013; 

Voulodimos et al., 2010). The HF spectrum has a primary frequency range and a 

read range of 13.56 MHz and 0 – 30 cm respectively. It can be used in gaming chips, 

personal ID cards, library books and near field communication (NFC) applications 

(e.g. Chang et al., 2010; Ching & Tai, 2009; Cho et al., 2013; Silva-Pedroza et al., 

2017). UHF has two types of RFID, i.e. active and passive RFID. Active RFIDs are 

mainly applied in mining, vehicle tracking, construction, car manufacturing and asset 

tracking (e.g. Kelm et al., 2013; Prasanna & Hemalatha, 2012). They have a read 

range of more than 100 m with a primary frequency range of 433 MHz (Goodrum et 

al., 2006). Passive RFIDs are used in manufacturing, pharmaceuticals, electronic 

trolling, asset and supply chain tracking (e.g. Çakıcı et al., 2011; Luvisi & Lorenzini, 

2014; Mo et al., 2009; Qing & Chen, 2007; Zhu et al., 2012). They have a much 

lower reading range (0 – 16 m) when compared to active RFIDs, and their primary 

frequency range is between 860 and 960 MHz (Dobkin, 2012; Glover & Bhatt, 2006; 

Shepard, 2005; Sweeney, 2010). 

This thesis presents the usage of NFC technology in mine water management. A 

typical NFC system is made up of an active NFC device, passive NFC device and a 

mobile application or a host computer (Figure 4.1; Coskun et al., 2013; Silva-

Pedroza et al., 2017). A lot of industries have explored ways of embedding electronic 

identification tags on bottles for tracking, identification or both. The study explored 

the practice of incorporating NFC tags to sampling bottles, usage of a NFC mobile 

application for recording on-site parameters during sampling and display of this data 

on a website application. Merging of these technologies in mine water management 
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has never been used before, and this thesis presents the first of its kind. Parties that 

are involved in mine water sampling include the sampler, laboratory technician and 

end-user of the results. This development allows these three parties to interact with 

each other via interconnectivity and sharing of sampling data, time and results made 

possible via a mobile application that can be accessed anywhere by all of them. 

Several programming languages were used to carry out this study including 

Extensible Mark-up Language (XML) and Java code for the Android mobile 

application, and Cascading Style Sheets 3 (CSS3) language, Hyper Text Mark-up 

Language 5 (HTML5) and JavaScript programming for the website application. The 

applications also required server provisioning and Structured Query Language (SQL) 

configuration to ensure maximal flexibility of the system. As this thesis describes the 

use of NFC technology, mobile and website applications in mine water sampling, it 

did not go into the details of the programming languages applied. 

 

Figure 4.1: NFC application structure 
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4.2 From Barcodes to RFID-NFC tags 

2D QR codes are widely used in many industries for tracking and identifying 

products. This item identifying and tracking style can be considered outdated 

technology and comes with its disadvantages. It is now commonly replaced by NFC 

which is part of the RFID community (Glover & Bhatt, 2006; Sweeney, 2010). NFC 

technology can be applied in anything that QR or bar codes or can; however, they 

are often more efficient. NFC can provide product information, track and also identify 

products faster than QR codes. During mine water sampling, 2D codes sometimes 

wear off on the bottle and it becomes difficult to scan or read them, whereas such 

occasions can rarely happen with NFC. QR or bar codes are sometimes difficult to 

scan as they require an unobstructed view of the code being scanned, a steady hand 

and sometimes it requires some time to scan them. This implies that codes cannot 

work in moving products such as vehicles, since it must be placed steady where 

scanning is practical. Therefore, QR or bar codes are associated with poor or very 

low scanning success and they are not always user friendly – it is now time to move 

forward with the NFC technology for these cases. 

NFC technology is well received in the IoT and smart packaging industries. 

Nowadays, modern smartphones are embedded with the NFC readability feature, 

and they can read information of the products that have NFC microchips, which is a 

much faster and easier process than scanning the codes. NFC microchips also 

enable consumers to get more information about the product instantly and hassle 

free. Data generated during the food production phases are stored in the cloud 

storage and can be accessed by the public with the usage of NFC supported 

smartphones. This process is done to ensure that the public know the full details of 

the products they are buying from different food outlets (Pigini & Conti, 2017). 
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4.3 Evaluation of the study 

Currently, when mine water samples are taken, there is no direct communication 

between the operator on the sampling site, the laboratory and the sampling 

institution. This slows down data exchange and can result in high response times to 

regulators or, in case of treatment plants, regulating the plant’s parameters. In 

addition, samples can easily get mixed up when being taken from the sampling site 

to the laboratory and data could be misplaced or lost.  

Mine water management in almost all operational mines consists of weaker 

optimisation techniques and does not generally take advantage of the power of 

digital technologies (More et al., 2020). If applied accordingly, these technologies 

can reduce costs of treating mine water and save time. The technology of interest in 

this thesis is the RFID-NFC and was used as an identifier coupled with website 

application and storage location, and not solely for tracking purposes it is famously 

known for. Mine water samples that are taken to the laboratory are sometimes 

interchanged, resulting in confusion as the contents in the bottles are the same, i.e. 

they all contain mine water. Using NFC as an identifier helps to differentiate the 

samples: it helps in correlating the samples to its specific data. Specifically, eMetsi 

consists of identifying the samples electronically at the time of sampling, storing the 

on-site parameters and sample data, transferring the data to a cloud storage 

location, and allowing end-users to use the sample identifying data (Figure 4.2). The 

combination of these technologies closes a gap between the samplers, the 

laboratory and end-users of the results by communicating sampling times and 

locations, sampling parameters and results between the parties involved in the 

process. 
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Figure 4.2: eMetsi – RFID controlled mine water sampling. LIMS: Laboratory Information 

Management Systems 

4.4 Proposed solution and study design 

4.4.1 NFC embedded sampling bottles 

An NFC microchip was incorporated on mine water sampling bottles used during the 

testing sampling process. The NFC microchips used in this study are the HF 

spectrum chips with a primary frequency range of 13.56 MHz, communication 

distance of up to 30 mm, and have a circular shape with a diameter of 10 mm 

(Microsensys GmbH, Erfurt, Germany; Figure 4.3). This is advantageous because it 

is easy to differentiate the sample bottles, i.e. multiple sampling bottles of different 

volumes can be used and applying this technique will make it easy to identify them at 

a later stage. 
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Figure 4.3: Water sampling bottle (not to scale) incorporated with a NFC microchip and NFC 

tags used in this study 

4.4.2 What problem does eMetsi solve? 

eMetsi is advantageous as it allows identifying samples at the sampling site and the 

laboratory, thus reducing errors in exchanging data relevant for the sample and 

laboratory results. As described earlier, using barcoded sample containers for 

sampling is challenging as samples and sampling locations might be mixed up or 

labels become unreadable. Additionally, it might be time consuming and 

inconvenient recording all sample data manually (e.g. on sampling sheets, field 

books, note books, field computers) or without using a database (e.g. cloud based). 

Therefore, eMetsi will ensure that sample parameters are recorded and accessed 

using mobile applications. 
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eMetsi is not solely restricted to mine water samples but can be expanded to general 

samples taken in various environments (e.g. manufacturing, extra-terrestrial 

expeditions, life science, agriculture) including the communication between the 

various users. Sample data can be exchanged electronically via wireless 

communication between the users and the electronic storage location. eMetsi also 

comes with the advantage such as the ability to store various types of data in 

different storage locations of the website application. The data include physico-

chemical parameters (e.g. water temperature, oxygen saturation, pH, oxygen 

concentration, redox potential, electrical conductivity) written into the memory at 

various sampling location points, providing users with detailed and readily accessible 

sample data. 

4.5 NFC mobile application and its screens  

eMetsi mobile application works on NFC supported smartphones on the Android 

platform. It can be used by anyone involved in a sampling project – in this case, the 

sampler, laboratory technician and end-user of the results, and requires login details. 

The mobile application has several functionalities such as allowing the sampler and 

laboratory technician to write data back to the database. It also enables the end-user 

to only view the data that is on the database. Furthermore, the application can be 

used offline, but a user management system is required. It is also connected to a 

website application with data that is added using the mobile application being 

pushed to the server and it can be viewed using the website application. 

eMetsi mobile application has a satellite based location feature (e.g. GPS) and an 

Open Street Maps functionality; therefore, the user is able to pin the sampling 

location for every sampling point. It is developed using XML for defining layouts and 

Java code to provide processing logic. Mixture of XML and Java is widely used for 
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Android application development. Layouts only declare the appearance of the 

application which is carried out by XML. To define what the application must do, 

Java code can be used. eMetsi mobile application enables the user to navigate 

through multiple screens while recording and storing sampling data. The following is 

a brief explanation of the mobile application screens: 

Login 

On the login screen (Figure 4.4 A), the user is able to login as one of the sampling 

project users. The login details can be generated by the administrator. 

Start 

After logging in, a new screen (Figure 4.4 B) shows up. Tapping on “start” allows the 

user to start adding or reading a tag. This can also be done offline and the 

application will save the data on the device as a CSV file and push it to the server as 

soon as the phone is connected to the internet. 

Main Menu 

The “main menu” screen (Figure 4.4 C) gives the user three options – “add tag”, 

“view all data” and “saved locations”. The “add tag” option allows the user to scan a 

tag and add information, but data will not be available until administrator user 

approves; “view all data” option shows the samples that have been saved (Figure 4.4 

H), and full information of these samples can be viewed on the website; “saved 

locations” option allows the user to view (Figure 4.4 K) or add possible locations 

(Figure 4.4 J). 
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Ready to scan 

The “ready to scan” screen (Figure 4.4 D) shows up after tapping “add tag”. This is 

where the user will scan a tag. 

Add New 

On the “add new” screens (Figure 4.4 E & F), after scanning a tag, the user can add 

on-site parameters during mine water sampling. When the user taps on “submit”, 

data will be saved and made available on the website application. The user can also 

select saved sampling locations on this screen (Figure 4.4 G). 

Locations 

After tapping “saved locations” on screen (C), “view locations” screen (Figure 4.4 I) 

will appear. On this screen, the user is able to see all the sampling locations, and 

can also add new locations by selecting the “+” option shown at the bottom right of 

screen (I). The “+” option will take the user to screen (J) on which they can select 

their desired location, i.e. sampling location by using the “drag and drop” option 

provided. Selecting the locations on screen (I) will take the user to screen (K) to view 

the selected location on a map. 

Logout 

Screen (C) has a logout option on the top right position, indicated by a small arrow. 

Tapping on this option will give the user a chance to logout of the application with the 

reading on the screen showing the writing “are you sure you want to logout?” (Figure 

4.4 L). 
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Figure 4.4: eMetsi NFC mobile application screen pages. Details in the text 



79 
 

4.6 Website application and its pages 

The website application can be accessed via an internet browser using an electronic 

device (e.g. computer). It was created using CSS3 to add the look and style in 

webpages, HTML5 to structure the webpages and their contents, and JavaScript 

programming which enables users to interact with webpages. Data stored on the 

mobile application is pushed to the server and can be viewed on the website 

application. Applying a user management, the application can be used by five 

different user types, having access to different webpages with different functionalities 

(Table 4.1). 
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Table 4.1: The different webpages with their functionalities for each user 

User Type Webpage Types Functionality 

Administrator Data Read-only all data 

 Available parameters Read/write parameter used for analysis 

 Add new request parameter Read/write parameters to be analysed 

 View parameters Read-only parameters 

 Users Read/write users 

 Add new user Read/write users 

 Locations Read/write locations 

 Add new location Read/write locations 

Leader Data Read-only all data 

 Requested parameters Read/write parameters to be analysed 

 Available parameters Read/write parameters used for analysis 

 New parameter request Read/write parameters to be analysed 

 View requests View parameters to be analysed 

 View parameters Read-only parameters 

Sampler Data Read/write sample data 

 Locations Read/write locations 

 View parameters Read-only parameters 

Worker Data Read-only sample data 

 View parameters Read/write parameters 

Client Data Read-only all data 

 View parameters Read-only parameters 

 

At the beginning, the website requires login details which can be created by the 

administrator for everyone using it. The administrator controls the data that goes into 

the database, the locations and other users (Figure 4.5). Project leaders can add or 

view parameters that need to be analysed (Figure 4.6). Sampling persons in the field 

can view or add on-site data and locations (Figure 4.7), while the project worker and 
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the client have limited functions with the worker only being able to view sample data 

and view or add parameters (Figure 4.8), and the client can only see each data point 

and where the data came from (Figure 4.9). Project workers and the client can only 

see the data that has been approved by the administrator. 

 

Figure 4.5: The administrator’s webpages (example data was used) 

 

Figure 4.6: The project leader’s webpages (example data was used) 
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Figure 4.7: The sampler’s webpages (example data was used) 

 

Figure 4.8: The project worker’s webpages (example data was used) 
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Figure 4.9: The client’s webpages (example data was used) 

4.7 Validation and discussion 

Research and technology are two unique sections that support each other. In the 

context of using technology to simplify research, relevant technological inclusion can 

help make research investigation much easier. For example, the inclusion of NFC 

tags in the sampling bottles makes it easy for laboratory technicians to identify the 

bottles and simply correlate the on-site data to its specific bottle. Utilisation of this 

android-based application resulted in positive qualitative data, and was highly 

convenient as opposed to manually recording everything on the field book or using a 

handheld scanner. This application development is one solution to contribute to 

modernising mine water management. 

The combination of NFC technology with mine water sampling will be advantageous 

for many reasons, where bulk sampling is at the centre stage. From the sampler’s 

point of view, the technology allows for the optimisation of time. This can be 

observed in the field during sampling where the sampler uses the mobile application 

to store on-site data. Data communication between the sampler, laboratory 
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technician and the end-user is simplified as data is easily extracted from the server 

through the developed website application. 

In the next chapter, techniques that can be applied in time series data for handling 

missing data and properly detect anomalies will be discussed. Some of the 

techniques that will be discussed in the next chapter are applied in data analysis 

processes in the following chapters of this thesis. The purpose of the next chapter is 

to introduce a new focus point of the thesis, i.e. data science, which forms a large 

part of the Internet of Mine Water. 
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CHAPTER 5 

5 Review of Some of the Techniques for Missing Data 
Interpolation and Anomaly Detection in Time Series 

5.1 Summary 

Time series are a set of ordered data that are observed at successive points in time. 

In this type of dataset, time is the dependent variable, while the y-axis represents a 

dependent collection of observations (e.g. Chatfield, 2000; Chen et al., 2005; Reich 

et al., 2016). Time series data is useful as it helps in understanding the past and can 

be used to forecast the future. Yet, any missing observations and anomalies in time 

series data can negatively affect interpretations if not dealt with appropriately. 

Examples of time series can be found in a variety of disciplines, such as science or 

economics. Measurements or readings in time series are records taken through time 

and missing observations or anomalies are quite common. This may be due to 

equipment malfunctioning, a mistake, personnel not working, or halting of operations. 

When a time series contains multiple missing values and anomalies, it may be 

necessary to apply appropriate techniques to interpolate the missing values and 

detect anomalies. This thesis presents a mixture of useful old and new techniques 

that can be applied to time series for interpolating the missing values and detecting 

anomalies. 

5.2 Missing Data 

Time series measurements are conducted at various times under different 

conditions, and sometimes missing data occur due to problems that are known as 

the missingness mechanism (Fielding et al., 2009; Little et al., 2014; Newman, 

2014). Missingness mechanism can be in three different forms: missing completely 

at random (MCAR), missing at random (MAR) or missing not at random (MNAR) 
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(Figure 5.1). A variable is MCAR if the probability of missingness is the same for all 

units, i.e. there is no dependencies of the missingness probability related to the 

variable itself — p(missing) is unrelated to all variables, observed and unobserved 

(equation 5.1). For example, MCAR can occur due to equipment not working 

properly or due to sensor data recording failure (e.g. Bähr et al., 2020). A variable is 

MAR if the probability of missingness is depending only on available information — 

p(missing) is only related to observed data (equation 5.2). For example, this can 

occur when certain days are skipped in a survey or during sampling. For the MNAR, 

p(missing) is only related to the unobserved missing data (equation 5.3). The 

missing data in MNAR are incomplete data that cannot be verified or predicted. 

 p(missing|complete data) = p(missing) 5.1 

 p(missing|complete data) = p(missing|observed data) 5.2 

 p(missing|complete data) ≠ p(missing|observed data) 5.3 

Several methods have been introduced to replace the missing observations. It is 

common practice to either impute or interpolate the missing values. Imputation is the 

process of using observations from the entire dataset to fill in the missing values, 

while interpolation refers to using neighbouring data points to estimate the missing 

values. In this thesis, an interpolation process will be explored. This thesis looked 

into some of the deterministic and stochastic models to interpolate the missing data. 
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Figure 5.1: Recommended techniques for each missing data type (modified and 

supplemented after Houari et al., 2014) 

5.3 Deterministic Modelling 

5.3.1 Background 

Deterministic modelling, which can also be referred to as numerical analysis 

modelling, is an approach that assumes that the time series data corresponds to an 

unknown function and the main aim is to fit the function in the correct way (Wackerly 

et al., 2014). The historical time series data is used to derive a best fit function, and 

the function is used to interpolate the missing values (Figure 5.2). 
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Figure 5.2: Function f(x) derived from the historical data xn 

In this approach, the outcomes are determined through known relationships among 

state and events, without room for random variation. Similar to a chemical reaction, a 

given input will always produce the same output. These models do not make room 

for error as they deal with systematic and definitive outcomes as opposed to random 

results. Through this approach, predictions can be computed and examine the 

relationship between variables. For example, if it is believed that y (mine water iron 

concentration) will be exactly two times x (mine water pH), then y = 2x. This means 

that the iron concentration can always be determined exactly when pH is known. The 

deterministic model prediction is a hypothetical “what-if” statement which helps in 

identifying the outcome using a particular x. This approach assumes certainty in its 

solution. 

5.3.2 Basis spline (B-Spline) 

Basis spline (B-Spline) is an interpolation technique in which the order chosen for the 

B-Spline curve is independent of the control points (Averbuch et al., 2014; Kineri et 

al., 2012). Control points are used to determine the shape of a spline curve. B-

Splines are unique and more advantageous when compared to other interpolation or 

approximation techniques such as splines or Bezier curves (Baydas & Karakas, 

2019). Splines follow the general shape of the curve, while the Bezier curve 

generally follows the shape of a defining polygon (Averbuch et al., 2014; Baydas & 

Karakas, 2019; Han et al., 2008). In the B-Spline curve, the independency of the 
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order of the curve over the local control points makes it a reliable interpolation 

technique. Thus, the B-Spline curve provides local control through control points in 

every segment of the curve (Hoffmann & Juhász, 2001; Kineri et al., 2012). For 

example, a curve may have 40, 60 or 100 points and there will still be freedom to fix 

the curve to any shape of e.g. quadratic, cubic or higher order. 

As can be seen, a B-Spline curve is not a single curve, but it is made up of a number 

of curve segments and all have the same continuity requirement depending on the 

order of the curve (Averbuch et al., 2014; Elbanhawi et al., 2015). B-Splines can be 

applied for the open and closed curves, and changing any of the control points 

changes only a specific segment of the curve (Figure 5.3), while in techniques like 

Bezier, the whole curve changes. Therefore, applying B-Spline interpolation in time 

series ensures that the missing data are interpolated within the population space and 

are not distorted or isolated. 
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Figure 5.3: B-Spline curve behaviour when changing a control point position. Changing the 

position of control point P1 only changed segment 1, while segment 2 remained intact 

5.3.3 Non-uniform rational basis spline (NURBS) 

Non-uniform rational basis spline (NURBS) curves are basically a modification or 

rational version of B-Spline curves. Their advantage is that they can create smoother 

surfaces with fewer control points (Shao & Xiao, 2011). NURBS are mathematical 

representations of complex structures, be it two- or three-dimensional objects, e.g. 

cars, buildings, cones or simple curves. They are the computer graphics design 

industry standard when it comes to creating or interpolating complex objects 

(Rogers, 2001; Sevilla et al., 2008; Shao & Xiao, 2011). Generally, they work 

exceptionally well in three-dimensional modelling, enabling the designer to easily 

manipulate control points and the contours’ smoothness. 
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NURBS are not necessarily dependent on a lot data; indeed it takes little data to 

define them. They are highly influenced by control points and weights (Rogers, 

2001). The non-uniform in NURBS refers to the idea that some segments or sections 

of a defined shape can be easily manipulated relative to other sections of the overall 

shape with control points being associated with weights (positive numbers). When 

these control points all have the same weight, the curve is called non-rational 

(Boudjemaa et al., 2003; Hoffmann & Juhász, 2001; Rogers, 2001) and the 

rationality of NURBS means that the curves have the possibility of being rational, i.e. 

NURBS have the ability to give more weight to the control points in the overall curve 

shape. Mathematically, NURBS can be defined as follows: 

 
C(U)=

1

∑ Ni,p(U)wi
n
i=0

∑ Ni,k(U)wiPi

n

i=0

 
5.4 

This NURBS curve, C(U), of the degree k is defined by control points P0, P1, …, Pn, 

knot vector U = u0, u1, …, um, and weights w0, w1, …, wn. The Ni,k is the normalised 

B-Spline function of degree k defined by: 

 
Ni,k(U)=

u – ti

ti+k – ti
Ni,k-1(U)+

ti+k+1 – u

ti+k+1 – ti+1

Ni+1,k-1(U) 
5.5 

and 

 
Ni,0(U)= {

1, if ti ≤ u < ti+1

0, else               
 

5.6 

Where ti are the knots forming a knot vector u = t0, t1, …, tm. 

5.3.4 Wavelet transform 

Wavelet transform is a technique derived from the Fourier Transform (FT) and Short-

Time Fourier Transform (STFT). Limitations that arise from the FT and STFT 

techniques basically gave birth to the wavelet transform (Averbuch et al., 2014; 
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Torrence & Compo, 1998). The FT provides frequency information of a signal that 

represents frequencies and their magnitude. However, it does not tell when in time 

these frequency components exist (Hansen, 2014; Serov, 2017). Therefore, it is 

ideal for signals that do not change with time, i.e. signals that have a constant 

frequency throughout. Consequently, FT’s disadvantage is that it lacks capability to 

provide frequency information for a localised signal region in time. STFT was 

therefore developed to overcome the poor time resolution of the FT. Thus, STFT 

explains the time frequency representation of the signal and it assumes that a certain 

portion of the non-stationary signal is stationary (Baba, 2012; Veer & Agarwal, 2015). 

The main limitation of STFT is that high frequency components appear as short 

bursts, thus needing higher time resolution (Boulet, 2006; Hon, 2013). So, the 

wavelet transform improves on this shortfall, i.e. it results in analysing a signal into 

different frequencies at different resolutions. Therefore, a wavelet is a rapidly 

decaying wave-like oscillation that has zero mean and exists for a finite duration 

(Averbuch et al., 2014; Bolton et al., 1995; Graps, 1995; Lord et al., 2000; Qi et al., 

2018; Torrence & Compo, 1998; Veer & Agarwal, 2015). Wavelet interpolation is a 

key factor in time series data due to the data’s stationarity properties. It is 

advantageous to apply this technique when the function is not smooth and is 

oscillating. 

PyWavelets, an open source wavelet transform software for Python, can be used to 

interpolate the missing values for oscillating data (Lee et al., 2019). PyWavelets 

combines a simple high level interface with low level C and Cython performance. 

Python consists of different types of wavelet families, e.g. Haar, Morlet, Gaussian or 

Frequency B-Spline wavelets. Therefore, for accurate results, a wavelet family which 
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fits best with the supplied data must be chosen. Each wavelet family is useful for a 

different purpose as they have different smoothness, shape and compactness. 

5.4 Stochastic Modelling 

5.4.1 Background 

Stochastic modelling which can also be referred to as probabilistic modelling, is a 

mathematical representation of a random phenomenon (Olofsson & Andersson, 

2012; Palma, 2016). This approach is based on statistical concepts and principles 

and is flexible in modelling historical time series data with its patterns and trends 

(Paolella, 2018). Stochastic modelling is also defined as statistical analysis tool that 

estimates, on the basis of historical data, the probability of an event occurring again. 

Stochastic models have some level of randomness, i.e. even with the same initial 

conditions, the model is bound to produce different results. The stochastic model 

includes both the deterministic component and a random error component. Thus, for 

example, y (iron concentration) will be two times x (pH) plus a random error, i.e. y = 

2x + random error. This thesis gives a brief overview of the probabilistic models that 

can be applied for data interpolation in time series. These models include 

autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) 

and autoregressive integrated moving average (ARIMA). 

5.4.2 Autoregressive models (AR) 

AR models forecast a series based solely on the past values of the series referred to 

as lags. A model that only depends on the previous lag is referred to as AR model of 

order one (Liu & Fomel, 2011; Oudre, 2018): 

 y
t
 = ω + ϕy

t-1
 + et 5.7 
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where yt is the target variable, yt-1 is the lagged target, et is the error of the model, ω 

and ϕ are the intercept and coefficient, respectively. 

The lagged target of the AR model occurs for every single point in the series, i.e. the 

recursion in time goes back until the beginning of the series, and these can be 

referred to as long memory models (Oudre, 2018): 

 y
t-1

 = ω + ϕy
t-2

 + et-1 

y
t-2

 = ω + ϕy
t-3

 + et-2 

⋮    =   ⋮    +    ⋮  +   ⋮ 

y
t-n

 = ω + ϕy
t-n

 + et-n 

5.8 

An AR model can have an order of more than one, i.e. the lookback period can be 

two, three, four or more. A time series that is a linear function of n past values plus 

an error is referred to as an autoregressive process of order n: 

 y
t
 = ω + ϕ

1
y

t-1
 + ϕ

2
y

t-2
 +…+ ϕ

n
y

t-n
 + et 5.9 

AR model can be used to find a line of best fit for a series, and ultimately be used to 

interpolate data (e.g. Liu & Fomel, 2011; Oudre, 2018). 

5.4.3 Moving average models (MA) 

Moving average (MA) models are generally applied to stationary time series. They 

forecast a series based only on the past errors in a regression-like model which are 

referred to as error lags. MA models depend on the errors in the series that exist 

over time. A MA model that depends only on one lag of error in the past can be 

mathematically described as: 

 y
t
 = ω + ϕet-1 + et 5.10 

The error of the MA is computed by finding the difference between the predicted and 

actual observation (Figure 5.4; Saeipourdizaj et al., 2021). 
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Figure 5.4: Moving average model mechanism 

5.4.4 Autoregressive (integrated) moving average models 
(ARMA/ARIMA) 

ARMA is a technique that combines AR and MA, and the model order must first be 

computed before a regression line can be fitted. The order of ARMA is known as 

ARMA(p, q), where p is related to the AR model, and it refers to the number of time 

lags, and q refers to the order of the MA model (Paolella, 2018). In the ARMA model, 

the influences of the previous lags together with the lag errors are considered when 

forecasting the future values in a series. Thus, ϕAR represents the coefficients of the 

AR model and ϕMA represents the MA model coefficients. For example, if an ARMA 

model is computed with only one lag for the AR model being used and only the first 

lag error is considered for MA model, then the order of the ARMA model will be 

ARMA(1,1). An ARMA model is a stationary model, and the AR enables it to make 

predictions using previous values of the dependent variables, while MA enables the 

ARMA model to make predictions using the series mean and previous errors 

(Olofsson & Andersson, 2012; Palma, 2016; Paolella, 2018; Wackerly et al., 2014): 
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 y
t
 = ω +  ϕ

AR1
y

t-1
 +  ϕ

AR2
y

t-2
 +…+  ϕ

ARn
y

t-n
 +  ϕ

MA1
et-1 +…+ ϕ

MAn
et-n + et 5.11 

ARIMA approach is similar to ARMA except for the differencing part. In statistics, 

differencing refers to when data has one less data point than the original dataset 

(Paolella, 2018; Wackerly et al., 2014). The ARIMA model is known with the order of 

ARIMA(p, d, q), where p and q are similar to ARMA order, and d is the number of 

differencing required to make the time series stationary. An ARIMA model with the 

order ARIMA(1, 1, 1) can be mathematically represented as: 

 y
t
 – y

t-1
 = Wt 5.12 

Wt = ω +  ϕ
AR1

Wt-1 +  ϕ
MA1

et-1 + et 

where Wt is the number of differencing required to reach stationarity in time series. 

5.5 Anomalies 

5.5.1 Background 

Time series often contain unexpected observations in its dataset which are referred 

to as anomalies. During exploratory data analysis, missing data interpolation is 

normally carried out in parallel with anomaly detection. It is imperative to detect 

anomalies in a dataset before any predictive and forecasting models are built to 

avoid getting unreliable results (Malhotra et al., 2015; Teng, 2010). Time series data 

can have seasonality and trend, and it is easy to be mistaken as an anomaly. Thus, 

this thesis presents appropriate techniques that are able to learn the seasonality and 

trend of a time series to eventually detect anomalies thereafter. 

5.5.2 Statistical profiling approach 

Statistical profiling is a simple and fast process that involves calculating measures of 

central tendency of the historical data and examining them (Wackerly et al., 2014). 

This can be done by calculating the mean, median or the moving average of the 
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data. Standard deviation can also be calculated and be used to set up the uppermost 

and lower bounds of the dataset as anomaly thresholds. This technique is known as 

the Z-score analysis in which the anomaly threshold is set by the three-standard 

deviations above and below the mean (e.g. Chikodili et al., 2020). Values that are 

outside the three-standard deviation thresholds are considered strong anomalies 

(Figure 5.5). Simple moving average can also be used for anomaly detection: it is 

applied to capture the pattern in time series. The difference between the actual and 

simple moving average can be computed to determine the tolerance band and 

identify anomalies. 

 

Figure 5.5: An example of anomaly detection using Z-score analysis 

5.5.3 Predictive confidence level approach 

Another way of detecting anomalies in time series data is by using the historical data 

to build a predictive model to get the overall trend, seasonality or cyclic pattern of the 

data. The model error can be analysed between the predicted and actual values, and 

use that to compute a confidence interval (Figure 5.6). The values falling beyond the 

confidence band can be regarded as anomalies. For example, an ARIMA model can 

be built and use the mean absolute percentage error (MAPE) to come up with a 
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confidence band (Kozitsin et al., 2021; Yu et al., 2016). Other ML or deep learning 

based algorithms such as long short-term memory (LSTM) or LSTM autoencoder 

produce accurate results for time series data, and thus can be used to find 

anomalies (Lindemann et al., 2021). This technique is highly dependable on the 

accuracy and good performance of the predictive model. Therefore, the model must 

be tuned to ensure that it produces a low error. 

 

Figure 5.6: An example of applying predictive confidence level bands to detect anomalies 

5.6 Conclusions 

This review detailed different statistical approaches to model time series data with 

missing values and outliers. For the missing data, both numerical and probabilistic 

modelling approaches for time series were examined. Additionally, statistical profiling 

and predictive confidence level approaches were examined to understand anomaly 

detection in time series. When time series data contains missing values and 

anomalies, it is always necessary to compute estimation and anomaly detection 
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models. By computing these models and ultimately cleaning the data, it will be 

possible to understand the nature of the data and make accurate forecasting 

analysis. Different series may require different techniques to interpolate the missing 

values and detect anomalies. It is necessary to use the reviewed techniques 

effectively in order to obtain accurate results. Some of the techniques discussed in 

this review are applied in the coming chapters of this thesis. 

The next chapter will introduce a hybrid intelligent model to forecast mine water 

chemistry, which applied a selection of the aforementioned techniques. This hybrid 

system is made up of three machine learning (ML) models: long short-term memory, 

gradient boosting and random forest models. Furthermore, ML models deployment is 

the main focus in this chapter, i.e. it goes into details of how to deploy trained and 

tested ML models using Flask application programming interface and Heroku cloud 

platforms. Finally, the best performing models are put in production as a web 

application which is used to make final predictions. 
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CHAPTER 6 

6 Developing Artificial Intelligence Systems – Web 
Application for Predictive Analysis 

6.1 Summary 

Water treatment plants, including mine water treatment plants, need to stock 

chemicals, have reliable and enough energy and human resources to operate 

reliably. To avoid a process interruption, proper planning of these resources is 

important. Therefore, a scientifically based, practical tool to predict and forecast 

relevant water parameters will help plant operators to know in advance which 

chemicals and methods to use to treat and manage polluted water. Therefore, this 

chapter aims to develop a hybrid intelligent system to predict and forecast mine 

water parameters using electrical conductivity (EC) and pH of mining influenced 

water (MIW) from the mine water treatment plant in Ekurhuleni, South Africa as an 

example. 

A hybrid intelligent system combines at least two artificial intelligence (AI) methods to 

predict a target label. Three machine learning (ML) algorithms: random forest 

regression, gradient boosting regression and a multilayer feed-forward artificial 

neural network (ANN) trained with backpropagation were compared to find the best 

learning model to be used for predictive analysis. These models were developed 

using historical data between the years 2016 and early 2021. The data contained a 

maximum of 14 parameters which were reduced to six after the dataset was cleaned 

and exploratory analyses were done. Therefore, the input variables of the models 

are turbidity, total dissolved solids (TDS), sulfate (SO4) and iron (Fe), with EC and 

pH being the target outputs. Anaconda, a Python distribution platform for ML (Wang 

& Oliphant, 2012), was used to build the models. 
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Optimisation techniques and hyper-parameter tuning, including different numbers of 

hidden layers and neurons for ANN, optimisers, activation functions and test sizes 

were applied for all the models. Results of the models have been compared with the 

measured data on the basis of mean absolute error (MAE) and root mean square 

error (RMSE). It was found that random forest and gradient boosting regression 

models performed better than the neural network model. Therefore, the better 

performing ML models, i.e. random forest and gradient boosting, were deployed 

using the Flask application programming interface (API) and Heroku cloud platform 

for prediction of EC and pH. Time series forecasting technique, Long Short-Term 

Memory (LSTM), was used to predict turbidity, TDS, SO4 and Fe values for 60 days, 

and these values were used to get the future values for EC and pH for the same 

period of time. 

6.2 Background 

Mining influenced water (MIW), especially acid mine or rock drainage (AMD/ARD) is 

a challenging problem encountered by many mining companies around the world 

(Verburg, 2011). Different techniques have been applied to predict the future mine 

water quality to better manage MIW (e.g. Côte et al., 2010; Fox, 1999; Gao et al., 

2014; Khandelwal & Singh, 2005; Liu et al., 2019; McCauley et al., 2009; Rooki et 

al., 2011). Modelling software such as GoldSim, MATLAB Simulink, Geochemists 

Workbench and PHREEQC have been previously favoured to predict future mine 

water quality (e.g. George et al., 2009; Nalecki & Gowan, 2008; Usher et al., 2010); 

however, researchers are trying to optimise these predictions by including artificial 

intelligence (AI) technology (More et al., 2020; Vadapalli et al., 2020). MIW occurs 

when iron-(di)sulfide minerals such as pyrite, marcasite or pyrrhotite react with water 

and oxygen (Blowes et al., 2014; Singer & Stumm, 1970). In case no buffer minerals 
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such as carbonates are present, these reactions will result in AMD/ARD. This MIW 

may contain potentially toxic elements depending on the geological background 

(Wolkersdorfer, 2008). 

AI being a disruptive technology presently drives the decision-making in many 

industries. They use smart data and machine learning to enhance the efficiency in 

operations, safety at the mines and workflow in production (e.g. Bui et al., 2020a; 

Danilov et al., 2015; Huang & Liu, 2009; Kansake et al., 2019; Otto et al., 2018). This 

chapter will present machine learning (ML) techniques in the form of a hybrid 

intelligent system to predict the indicator mine water parameters electrical 

conductivity (EC) and pH at a treatment plant in the east of Johannesburg, 

Ekurhuleni, South Africa. This chapter used historical data from the years 2014 to 

2021, supplied by the Department of Water and Sanitation, Pretoria, South Africa. An 

AI system developed is a hybrid intelligent system as multiple methods are applied to 

predict the target parameters. The ML technique can be divided into different 

learning categories such as supervised, unsupervised and reinforcement learning 

(Alpaydin, 2010), whereas in this chapter, supervised learning is used. 

Supervised learning is where a model has input variables and an output value and 

uses an algorithm to learn the mapping function from the input to the output (Burkov, 

2019; Swamynathan, 2017). This method provides a computer system access to 

datasets that consists of input—output pairs, and the goal is to train the system to 

find a function that maps inputs to outputs. There are several tasks within supervised 

learning such as classification and regression. Osisanwo et al. (2017) describe 

classification as a supervised task to learn a function that maps an input point to a 

discrete category, and it classifies data using the nearest-neighbour or k-nearest-

neighbour classification algorithms. These are algorithms that, when given an input, 
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choose the class of the nearest data point to that input or choose the most common 

class out of the k-nearest data point to that input, respectively (e.g. Ali et al., 2019; 

Duivesteijn & Feelders, 2008). Regression is a supervised learning task of mapping 

an input point to a continuous value (Burkov, 2019). It is used to find the correlation 

between x and y variables, to know the strength of predictions and for forecasting an 

effect and trend (e.g. Betrie et al., 2013; Ekemen Keskin et al., 2020; Maier et al., 

2004; Singh et al., 2017a). Therefore, supervised learning is a technique used in this 

chapter with the focus on data regression. In this paper, the main aim was on 

accuracy of the results, thus the ML algorithms explored include random forest, 

gradient boosting and neural networks, and the forecasting technique method used 

is the Long Short-Term Memory (LSTM). 

Mine water quality can be evaluated using several parameters, e.g. EC, pH, major 

ions, turbidity, acidity and more. The amount of dissolved minerals in mine water is 

represented by total dissolved solids (TDS) and EC, which is crucial for mine water 

conditions. EC gives a measure of TDS as TDS = f(EC) (Hem, 1985; Hubert & 

Wolkersdorfer, 2015). Because accurate measurements of EC and TDS are 

important in determining mine water quality, EC is one of the target outputs in the 

developed ML models in this chapter. Another parameter used as a target output is 

pH, which is a measure of how acid or basic water is (Bates, 1964). Therefore, pH 

measurements are important in determining the amount of (semi-)metals that might 

be dissolved in mine water and the volume of clean water that can be discharged. 

Treated mine water is usually discharged into receiving water courses or for 

industrial and commercial use. Thus it is crucial to know the pH values of mine water 

entering the treatment plant beforehand so it can be increased or decreased 

accordingly to precipitate unwanted metals. 



104 
 

6.3 Machine Learning Algorithms Used 

6.3.1 Random Forest Regression 

Random forest regression builds a “forest”, which is an ensemble of decision trees 

trained using a “bagging” method. It works on the idea that a combination of models 

(decision trees) increases the accuracy of the results and yields better prediction. 

Bagging is a statistical technique that deals with high variance and bias problems. 

This algorithm involves random sampling of training observations in the process of 

building decision trees, and random subsets of features for splitting nodes.  Random 

forest grows trees using binary partitioning, i.e. each parent node is split into two 

children. At each tree split, a random sample of m variables is selected out of all M 

possible variables, and only those m variables are taken for splitting. Normally, this is 

given by the expression: m = √M (Biau & Scornet, 2016; Breiman, 2001). 

In random forest, variables are selected using embedded algorithms containing their 

unique built-in variable selection methods. These algorithms are highly accurate, 

they make better generalisations and are interpretable (Genuer et al., 2010; 

Nyongesa, 2020). Random forest consist of multiple decision trees, sometimes even 

more than one hundred trees, each of them constructed over a random selection of 

the observations from a dataset. The trees are de-correlated because they cannot 

“see” all the observations, and this guarantees less overfitting. At each node of the 

decision tree, the dataset is divided into two sets, each with observations much 

similar among themselves, yet different from the ones in the other set. 

6.3.2 Gradient Boosting Tree Regression 

For a gradient boosting algorithm to work, the loss function and additive model must 

be computed. Firstly, the boosting algorithm computes the first residual by finding the 
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average value of the variable that needs to be predicted. Therefore, the residual is 

computed by: 

 residual = actual value – predicted value 6.1 

Therefore, a tree is built with the goal of predicting the residuals, meaning each leaf 

will contain a prediction as to the value of the residual and not the desired label. 

Some leaves may end up having more residuals, and when this happens, the 

average of the residuals is computed. Each sample will then pass through the 

decision node of the new tree until a given leaf is reached. Then the residual in this 

leaf is used to predict the actual output. A hyper-parameter known as the learning 

rate is then introduced to prevent overfitting. In the process of making a prediction, 

each residual is multiplied by the learning rate: 

 Po = Ao + α × RDT 6.2 

where Po is the predicted output, Ao refers to the average output, α is the learning 

rate parameter and RDT refers to the residual predicted by decision tree. 

Therefore, new residuals are calculated by subtracting the actual output from the 

predictions made in equation 6.2. These residuals will be used for the leaves of the 

next decision tree. After training, all trees in the ensemble are then used to make the 

final predictions, FP: 

 FP = Ao + α1 × RDT1 + α2 × RDT2 +…+ αn × RDT n 6.3 
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6.3.3 Neural Networks and structure 

Artificial neural network (ANN) modelling is a technique in which the model is using 

known input and output parameters so it can learn from the historic data. The aim is 

to teach the model to produce output parameters by providing inputs. In other 

means, neural networks take in data, train themselves to recognise the patterns in 

this data, and finally predict the output for a new set of similar data (Alpaydin, 2010; 

Krenker et al., 2011). ANN technique depends on the number of hidden layers to be 

used, the neurons in each hidden layer, activation function, learning rate and 

momentum, and the iterations and desired error level. Neural networks are made up 

of layers of neurons which are the core processing units of the network – the input 

layer neurons receive the input data, output layer neurons predicts the output 

parameter, and the hidden layer neurons perform most of the computations required 

by the network. ANN is a mathematical model that operates on three set of rules, i.e. 

multiplication, summation and activation as explained by Krenker et al. (2011) 

(Figure 6.1). 

An input layer of the ANN gets input parameters, and its neurons are connected to 

the hidden layer neurons through “channels” that are assigned numerical values 

known as “weight”. Inputs are multiplied with the corresponding weights and the sum 

is transferred as inputs to the hidden layer neurons. The hidden layer neurons are 

associated with numerical values known as the “bias” and are added to the input 

sum. Furthermore, the resulting value is passed through a threshold function known 

as the activation function which determines whether a particular hidden layer neuron 

will get activated or not. Activated neurons transmit data to the neurons of the next 

hidden layer over the channels; this process is known as feed forward propagation 

(e.g. Svozil et al., 1997; Yuan et al., 2003). Therefore, in the output layer, the neuron 
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with the highest probability determines the output. Finally, the predicted outputs are 

then compared to the actual outputs, and an error can be deduced. This is therefore 

transferred back to the network in which weights can be adjusted according to the 

derived errors; this process is known as back propagation (e.g. Law, 2000). 

 

Figure 6.1: Artificial neuron’s working concept (modified after Krenker et al., 2011) 

In this section, a supervised learning algorithm for neural network modelling was 

adopted, i.e. a back propagation algorithm. For this network, the architecture has 

one input layer with four neurons, two hidden layers all with six neurons and one 

output layer with two neurons (Figure 6.2). It should be noted that the two hidden 

layers automatically make this neural network a deep learning model or deep neural 

network (e.g. Montavon et al., 2018). 
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Figure 6.2: Neural Network architecture for this study 

From the above structure (Figure 6.2), the jth neuron of the hidden layer 1 is 

connected to several input neurons, xi: 

 xi = x1 + x2 + x3 + x4 6.4 

The total input values in the hidden layer 1 can then be given by: 

 
Totj = ∑ xi

n

i=1

Wij + β
j
 

6.5 

where n is the total number of input units, xi is the input unit, Wij refers to the weight 

connecting the ith neuron to the jth neuron and ꞵj is the bias neuron. 
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Therefore, the total hidden layer 1 output, yi, is computed using the logarithmic 

sigmoid function: 

 
y

j
 = 

1

1 + e-(Totj+βj)
 

6.6 

The total input in the output layer is given by: 

 
Totl = ∑ y

k

n

l=1

Wkl + β
l
 

6.7 

where Wkl is the weight connecting the kth neuron to the lth neuron and ꞵl is the bias 

neuron. 

Therefore, the total computed output, yl, can be given by: 

 
y

l
 = 

1

1 + e-(Totl+l)
 

6.8 

With back propagation technique being applied, the computed output must be 

compared with the target output, Tl, and determine the error, el, at any neuron in the 

lth layer: 

 el = Tl – y
l
 6.9 

The total error, El, which must be propagated from the output layer neurons to the 

hidden layer neurons, is given by: 

 
El = ∑ (Tl

n

m=1

 – y
l
)
2
 

6.10 

Each weight must be updated using the calculated total error by applying partial 

derivatives: 
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∇Wk l= 

∂l

∂Wkl

 
6.11 

with: 

 ∂El

∂Wkl

 = 
∂El

∂y
l

 × 
∂l

∂Totl
 × 

∂Totl

∂Wkl

 
6.12 

and: 

 ∂El

∂y
l

 = –(Tl – y
l
) 

6.13 

 ∂y
l

∂Totl
 = y

l
(1 – y

l
) 

6.14 

 ∂Totl

∂Wkl

 = y
k
 

6.15 

Therefore, the new weights can be calculated by: 

 Wkl
new = Wkl – α × ∇Wkl 6.16 

where α is the learning rate parameter. 

6.4 Mine Water Quality Dataset 

The data used in this chaper was generated through the monitoring and managing of 

MIW, with nearly daily sampling being carried out during a period of six years (2016–

2021). Parameters that were measured during this period are rainfall, temperature, 

EC, TDS, total suspended solids (TSS), acidity (as CaCO3), pH, calcium (Ca as 

CaCO3), magnesium (Mg as CaCO3), sulfate (SO4), aluminium (Al), iron (Fe) and 

manganese (Mn), and they were used in the units applied by the lab. All of these 

parameters had some of the measurements missing, leading to them not having the 

same number of observations. Fe, turbidity and pH had the most number of 
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observations, while rainfall and Mg had the very least of observations (Table 6.1). 

Therefore, the data had to be “cleaned” before it was used for training and testing 

ML models and for forecasting analysis. 

Table 6.1: Mine water quality data supplied; n: number of measurements, x̅: average, σ: 

standard deviation, min.: minimum observation, max.: maximum observation. True average 

for pH have been calculated as –log10[(∑Ci)/(n)], where C is the hydrogen ion (proton) 

activity and n is the number of measurements (www.wolkersdorfer.info/pH_en) 

Parameter n x̅ σ Min. Max. 

Rainfall, mm 59 13.7 10.6 1 40 

Temperature, °C 1387 23 2 17 29 

EC, mS/cm 1387 3 0.1 2.4 3.2 

TDS, mg/L 1381 2678 185 2014 3195 

pH, — 1396 6.5 0.2 5.1 7.3 

Turbidity, NTU 1398 54.2 59.9 0.5 450 

TSS, mg/L 1386 74 75 0.0 378 

Acidity, mg/L CaCO3 898 310 41 166 442 

Ca, mg/L CaCO3 598 399 25 267 560 

Mg, mg/L CaCO3 591 101 35 19 389 

SO4, mg/L 1396 1474 204 658 1988 

Al, mg/L 692 0.1 0.0 0 0.2 

Fe, mg/L 1402 97.7 15.6 0.1 179.4 

Mn, mg/L 1384 6.6 3.4 0.0 22.9 

 

6.5 Data Cleaning and Exploratory Data Analysis 

6.5.1 Data distribution 

The graphical methods show how the data are distributed (Figure 6.3Figure 6.4) and 

help in visualising the spread, i.e. dispersion, variability and scatter. Distribution 

shape is important as it informs whether the data are normally distributed, skewed to 
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the right or left, or are distributed uniformly. Additionally, the Kolmogorov-Smirnov 

and Shapiro-Wilk tests were conducted to test the normality of the data (Table 6.2). 

In most cases, the Shapiro-Wilk test works better on small sample sizes (n < 50), 

while the Kolmogorov-Smirnov test is used on larger sample sizes (n ≥ 50). 

Therefore, the Kolmogorov-Smirnov test was relied on to conclude on the normality 

of the data. From the constructed graphs and tests conducted, it shows that the data 

are not normally distributed, and all parameters have statistically significant outliers. 

The p-values for all the variables are less than 0.005, which implies that the data do 

not follow a normal distribution. 

Table 6.2: Normality data test using Kolmogorov-Smirnov and Shapiro-Wilk methods; n: 

number of observations, p-value: probability value 

  Kolmogorov-Smirnov  Shapiro-Wilk 

Parameter n Statistic p-value  Statistic p-value 

Rainfall 59 0.143 0.004 0.912 0.000 

Temperature 1387 0.089 0.000  0.970 0.000 

Turbidity 1387 0.185 0.000  0.803 0.000 

EC 1381 0.152 0.000  0.940 0.000 

TDS 1396 0.176 0.000  0.918 0.000 

pH 1398 0.111 0.000  0.947 0.000 

TSS 1386 0.221 0.000  0.848 0.000 

Acidity 898 0.197 0.000  0.912 0.000 

Ca 598 0.341 0.000  0.469 0.000 

Mg 591 0.319 0.000  0.338 0.000 

SO4 1396 0.141 0.000  0.917 0.000 

Al 692 0.043 0.004  0.986 0.000 

Fe 1402 0.139 0.000  0.788 0.000 

Mn 1384 0.195 0.000  0.858 0.000 
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Figure 6.3: Time series plots of mine water data at the Eastrand mine water treatment plant 

over a period of six years (2016–2021) 
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Figure 6.4: Histograms of Eastrand mine water treatment plant data (2016–2021) 

Dependent variables and possible relationships between the parameters were 

visualised using the correlation matrix with statistical significance levels (Figure 6.5). 

Correlation coefficients (r) of the parameters vary from lowest to highest, with the 

notable strongest positive relationships of 0.7 and 0.69 between EC–TSS and 

turbidity–TSS, respectively. Even though most of the relevant parameters show a 

low correlation coefficient, they however display high statistical significance. 
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Figure 6.5: A correlation chart with the distribution of each parameter shown on the 

diagonal; on the bottom of the diagonal are the bivariate scatter plots with a fitted line; on the 

top of the diagonal are the values of the correlation with the significance levels shown as 

asterisks: ***p < 0.001, **p < 0.01, *p < 0.05; correlation coefficient font size is related to the 

relationship between the parameters – the stronger the relationship the larger the font size 

and vice versa 

6.5.2 Outlier visualisation, detection and removal 

In statistical terms, an outlier is an observation that is different from the other 

observations (Wackerly et al., 2014). This can happen due to a mistake during data 

collection, equipment malfunctioning or just an indication of variance in data 
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collected. Outliers can be identified using visual or statistical methods. In this 

chapter, the box plot visualisation methods were used, which graphically shows the 

groups of numerical data using their quartiles. Outliers are plotted as points while 

other data are displayed within boxes (Figure 6.6). 

 

Figure 6.6: Box plots with outliers for the Eastrand AMD Treatment Plant data 

Z-score analysis was additionally applied on the data for outlier detection and 

removal. Z-scores refer to the number of standard deviations above and below the 

mean, where a Z-score of ± 3 implies that an observation is three standard 

deviations above or below the mean. A Z-score for an observation is calculated by 

taking the observation (X), subtract the mean (µ) and divide by the standard 

deviation (σ): 
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Z = 

X – μ

σ
 

6.17 

The further away an observation’s Z-score is from zero, the more chances of it being 

an anomaly. Standard cut-off values in determining outliers are Z-scores of ± 3 or 

even far away from zero (Figure 5.5). 

6.5.3  “Clean” data 

Data cleaning is the process of removing data that can potentially negatively affect 

the performance of the forecasting models. This process involves identifying and 

removing the outliers and also correctly replacing the missing values. After the data 

cleaning process, only nine parameters were statistically significant and some with 

good correlation coefficients. However, within these nine parameters, acidity, TSS 

and Mn were discarded. Acidity was dropped due to a low number of observations, 

i.e. 898 out of 1381 when compared to other observations, while TSS and Mn 

contains frequent observations with 0 mg/L or very low readings making them not 

effective for model training and testing. Therefore, parameters used for training and 

testing the ML models were turbidity, TDS, SO4, Fe, EC and pH (Figure 6.7). 

Some of the observations were missing for each parameter, although this was just a 

small proportion that might not necessarily negatively affect the quality of the results. 

In Python, it would not be possible to build ML models with dataset containing 

missing observations. There are different statistical techniques to impute missing 

observations, but mostly depend on the type of data available. Techniques such as 

sequential imputation for missing values (IMPSEQ), iterative robust model-based 

imputation (IRMI) and multiple imputations of incomplete multivariate data (AMELIA) 

have been put to test over the years to solve the missing values problem on 

historical data (Betrie et al., 2016). 
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Various linear regression methods with single and multiple independent variables 

were applied in this study in an attempt to fill-in the missing values, but it was not 

possible due to the number of observations for parameters not matching. A well-

known method of dealing with missing observations when building predictive models 

in Python is replacing missing values with large numbers, e.g. -9999 or 9999, so the 

algorithm can automatically detect it as an anomaly. However, this is not ideal when 

dealing with a uniformly distributed data. Therefore, this problem was solved by 

applying a robust, fast and simple method: getting the average of the three 

observations before and after the missing observation: 

 
y

i
 = 

∑ y
m

i-1
m=i-3 + ∑ y

n
i+3
n=i+1

6
 

6.18 
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Figure 6.7: Density with cross plots (lower part of the graph), histograms (diagonal-middle 

part of the graph) and cross plots (upper part of the graph) of the parameters used to train 

and test the machine learning models 

6.6 Results and Discussion 

6.6.1 General results 

This study used mine water data from a treatment plant in the east of Johannesburg, 

South Africa to predict EC and pH of mine water using random forest, gradient 

boosting and ANN algorithms on a Python distribution platform for ML known as 

Anaconda. Input data were the mine water parameters consisting of turbidity, TDS, 
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Fe and SO4, and the output data were EC and pH values. In total, 1381 observations 

for each parameter were used for the model. In all the three algorithms, the data 

were split into two phases: training and testing. As recommended by Bui et al. 

(2020b), the dataset was split using a test size of 0.2; i.e. 20% of data (277 

observations) were used to assess the models’ performance and 80% (1104 

observations) were used as training set. 

Random forest regression algorithm has an option to select the number of decision 

trees to use, although the default number is 500 (Breiman, 2001). With the number 

of observations that were available for training and testing, a grid search optimisation 

method for selecting the number of trees was used. A grid search of 10, 50, 100, 150 

and 200 decision trees was applied, and 10 trees gave the best results. Thus, 10 

trees were used to ensure the richness of the forest. This model creates a number of 

bootstrap samples (smaller samples randomly selected from larger sample) and 

develops a regression for each. Each bootstrap iteration was used to predict EC and 

pH values and were averaged from all the decision trees. 

With gradient boosting regression, the important parameters that determine the 

performance of the predictive model are: the number of trees, maximum tree depth 

and the learning rate (the value at which the weights are updated during model 

training). Using the same approach applied in the previous model, grid search 

optimisation technique was used to tune hyper-parameters, so the algorithm can 

give the best number of trees (100), maximum tree depth (2) and learning rate (0.05) 

to use. 

ANN model takes into account the number of hidden layers and nodes, optimisers 

(learning rate, bias and momentum), epochs, batch size and activation functions. In 
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most cases, a deep neural network model with multiple hidden layers can make 

accurate predictions (e.g Easley et al., 2018). The ANN structure was determined 

using the optimisation techniques and yielded a model with two hidden layers of six 

nodes and rectified linear activation function for each (Figure 6.2), a sigmoid 

activation function for the output layer, stochastic gradient descent optimiser with 

learning rate and momentum of 0.001 and 0.8 respectively, batch size of 16, and 50 

epochs. MAE and RMSE were used to evaluate the performance of predicted EC 

and pH values for all the models. 

The findings of this study suggest that random forest and gradient boosting analysis 

are powerful of predicting accurate EC and pH values due to their good model 

performance, while the ANN model performed poorly. Further hyper-parameter 

tuning to improve ANN algorithm performance was not conducted; therefore, this 

study relied on random forest and gradient boosting regression tree algorithms to 

perform predictive analysis. 

All the models tested in this study were for predicting continuous data, and the 

evaluation metrics used are the mean absolute error (MAE) and root mean square 

error (RMSE) for both testing and training datasets (Table 6.3). The main aim of this 

evaluation was to predict the generalisation accuracy of a ML model on future data. 

Absolute error refers to the amount of error in measurements – it is the difference 

between the measured value and predicted value, while the MAE is the average of 

all absolute errors (Ahmed et al., 2019; Reich et al., 2016). Larger MAE implicates a 

larger error. 

 
MAE = 

1

n
∑ |xi 

n

i=1

– x| 
6.19 
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where n is the number of data points, xi refers to the observed values and x are the 

predicted values. 

MSE shows how close a regression line is to a set of points. This is done by taking 

the errors (or distances) from the points to the regression line and squaring them to 

remove possible negative signs. With MSE, the average of a set of errors can be 

identified (Draper et al., 2013; Gilroy et al., 1990). The lower the MSE the better the 

model, the larger the MSE the larger the error, and zero MSE means the model is 

perfect: 

 
MSE = 

1

n
∑ (xi 

n

i=1

– x)
2
 

6.20 

RMSE is the square root of MSE. It is the standard deviation of the prediction errors 

which is a measure of how spread out the prediction error is. RMSE shows how 

concentrated the data is around the regression line (Ahmed et al., 2019; Draper et 

al., 2013). The RMSE values between 0.2 and 0.5 show that the model can relatively 

predict data accurately. 

 

RMSE = √
∑ (n

i=1 xi – x)
2

n
 

6.21 

Therefore, the smaller the values of MAE and RMSE imply that the model performed 

well. ANN is the only model with MAE and RMSE values greater than 1 (Figure 6.8), 

making it the only bad performing algorithm for this set of data. 
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Table 6.3: Performance on testing and training dataset for random forest, gradient boosting 

and neural network models 

 Testing  Training 

Algorithm MAE RMSE Quality  MAE RMSE Quality 

Random Forest 0.074 0.109 Good 0.032 0.049 Good 

Gradient Boosting 0.070 0.100 Good  0.069 0.100 Good 

Artificial Neural network 3.822 4.114 Bad  3.815 4.110 Bad 

 

 

Figure 6.8: The change in training and validation loss throughout the training process using 

Mean Squared Error (the upper graph) and Mean Absolute Error (the lower graph) 

A robust linear regression method was used to analyse the relationship between the 

predicted and measured values of EC and pH. From the graphs (Figure 6.9), the 

values show substantial and moderate correlation of EC and pH values, respectively. 

Predicted values of EC and pH produced correlation coefficients of 0.626 for EC and 

0.432 for pH using random forest algorithm, while the gradient boosting algorithm 

produced correlation coefficients of 0.633 for EC and 0.433 for pH. The algorithms 

performed well with low values of MAE and RMSE, but prediction results show 

moderate correlation for pH and substantially good correlation for EC. Furthermore, 

significance levels were tested to determine which of the four relationships are more 
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significant than the others. Finally, the results show that gradient boosting’s 

predicted data has a higher statistical significance than random forest’s prediction 

(Figure 6.9). 

 

Figure 6.9: Comparing the measured and predicted EC and pH values; A: Gradient Boosting 

algorithm for EC, B: Gradient Boosting algorithm for pH, C: Random Forest algorithm for EC, 

D: Random Forest algorithm for pH; ***p < 0.001, **p < 0.01, *p < 0.05 

6.6.2 Model deployment 

The main goal of developing ML models is to solve a problem, and a ML model can 

only achieve that when it is deployed and used in an AI system. Deployment is a 

process whereby the ML model is integrated into a suitable platform to make 

practical business decisions based on the data. The models have been built through 

training and testing techniques, with random forest and gradient boosting regression 

tree algorithms yielding good results, and therefore they are the only two out of three 
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tested algorithms deployed. Building models is as important as deploying them. A 

ML deployment process should be clear on how to get feedback from a model in 

production and how to set up continuous delivery. Actively tracking and monitoring 

the ML model state can be advantageous in knowing the model performance decay, 

major anomalies, or even data skewness. 

In this study, an application programming interface (API) was created to deploy ML 

models using the Flask and Heroku platforms (Figure 6.10). Flask is a web 

framework for Python programming language, i.e. it provides functionality for building 

web applications. Heroku is a cloud platform on which applications can be deployed, 

managed and scaled (Lindenbaum et al., 2007). Steps involved in this deployment 

process include a) training the model, b) creating a web application using Flask, c) 

committing programming code in GitHub (Preston-Werner et al., 2008), d) linking 

GitHub to the Heroku cloud platform, e) and finally deploying the model as a web 

application (Figure 6.11). 

 

Figure 6.10: Deployment of machine learning models 
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Figure 6.11: Screenshot of the web application used to predict EC and pH of mining 

influenced water for the Eastrand “Acid Mine Water” treatment plant in Springs, South Africa 

(https://ec-ph-prediction.herokuapp.com) 

In this case, the web application was supplied with values of turbidity, TDS, SO4 and 

Fe, and it gave predictions of EC and pH for both random forest and gradient 

boosting regression tree algorithms. These values were compared with the 

measured ones, showing little to no difference (Table 6.4). This implies that the 

developed web application can accurately predict the values of EC and pH for 

historical data when missing on the report. 
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Table 6.4: A comparison of measured EC and pH values versus the predicted values for 

historical mine water data using the web application. Prediction error is calculated as: 

|[(measured–predicted)/(measured)]×100%| 

Gradient Boosting regression Algorithm  Random Forest Regression Algorithm 
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3.15 3.07 2.54 6.55 6.34 3.21 3.15 3.10 1.59 6.55 6.38 2.60 

3.15 3.03 3.81 6.41 6.41 0.00  3.15 3.09 1.90 6.41 6.39 0.31 

3.08 3.07 0.32 6.31 6.35 0.63  3.08 2.99 2.92 6.31 6.50 3.01 

3.07 3.00 2.28 6.28 6.37 1.43  3.07 3.03 1.30 6.28 6.33 0.80 

3.09 3.06 0.97 6.24 6.37 2.08  3.09 3.07 0.65 6.24 6.33 1.44 

2.99 3.03 1.34 6.48 6.39 1.39  2.99 3.01 0.67 6.48 6.44 0.62 

3.04 2.97 2.30 6.67 6.47 3.00  3.04 3.02 0.66 6.67 6.64 0.45 

3.00 2.99 0.33 6.32 6.43 1.74  3.00 3.01 0.33 6.32 6.43 1.74 

3.05 3.06 0.33 6.15 6.34 3.09  3.05 3.06 0.33 6.15 6.24 1.46 

3.04 2.99 1.64 6.27 6.42 2.39  3.04 3.01 0.99 6.27 6.33 0.96 

 

6.6.3 Forecasting and Web Application Prediction Results 

Long short-term memory (LSTM) was used to forecast the observations for the input 

parameters (turbidity, TDS, SO4 and Fe) for 60 days. These predicted input 

parameter observations were used to forecast EC and pH for the same period. 

Recurrent neural networks (RNNs) are often used in time series analysis. However, 

they have limitations such as failing to process longer sequences and the vanishing 

gradient. LSTM is a type of RNN that is developed to overcome the problems a basic 

RNN would encounter, and were thus used in this study. 
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In the LSTM model, the number of past days used to predict the future was set to be 

100 days. A single hidden layer LSTM having 32 memory units with a rectified linear 

(ReLU) activation function was used in this study. The model was fitted over 50 

epochs with a batch size of 32 and validation split of 0.2, and was further compiled 

using the adaptive moment estimation (Adam) optimiser and mean squared error 

(MSE) loss, with the lower MSE implying that the model performed well (Figure 

6.12). Forecasting for turbidity, SO4, TDS and Fe were therefore computed (Figure 

6.13). The forecasted values of the input parameters were then fed to the trained 

random forest and gradient boosting regression tree models (Figure 6.14) to forecast 

the values of EC and pH for 60 days (Figure 6.15). 

 

Figure 6.12: Performance of the LSTM model 



129 
 

 

Figure 6.13: Forecasted values for turbidity, SO4, TDS and Fe for 60 days using the LSTM 

model. Visualisation starts on 1 November 2020 due to a tiny forecast of 60 days and a large 

historical data of 1381 observations (fitting the whole 1381 observations would make it 

difficult to visualise the results); A: Turbidity forecast, B: SO4
2- forecast, C: TDS forecast, D: 

Fe forecast 
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Figure 6.14: Electrical conductivity and pH prediction structure showing the connection between different algorithms used (modified and 

supplemented after Vadapalli et al., 2020) 
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Figure 6.15: EC and pH forecasting visualisation using the web application 

6.7 Conclusions 

Random forest and gradient boosting algorithms yielded low error measures in 

forecasting EC and pH values using historical data. Therefore, the approach of using 

ML models is a scientifically important contribution in knowing the future quality of 

mine water. ANN’s error measures were too high, making the algorithm not suitable 

for the MIW data. It should be noted that further hyper-parameter tuning for the ANN 

algorithm was not done to improve its performance, and therefore this study relied on 

the forecasting ability of random forest and gradient boosting algorithms. Predicted 

values of EC and pH with random forest and gradient boosting algorithms were not 

much different from the measured ones, giving much needed confidence and 

reliability in the prediction of mine water chemistry. In addition, the ANN model did 

not produce the best results, however, it can still be considered in other instances 

with extended datasets. 
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Incorporating ML models in mines can improve the current treatment practices, give 

a good mine water balance, and increase the effectiveness at which MIW is treated. 

Predicting the chemistry of MIW will ensure that the treatment plant operator knows 

in advance the quantity and type of chemicals and methods to use to treat and 

manage mine water. In mine water treatment, neutralising agents such as lime or 

quick lime are added to increase the pH for precipitating iron and other metals or 

semimetals. For mine water treatment plants it is therefore important to know the 

future development of the water parameters in order to stock for chemicals or to 

control the mine water level in a pumped system. This research proved that 

computational-intelligence techniques are much more effective than traditional 

dynamic modelling approaches. Therefore, the proposed approach can be an 

efficient tool and useful alternative for forecasting mine water quality parameters. 

Future research will focus on forecasting additional parameters such as Fe or SO4 

from other plants. 

6.8 Remarks 

It is crucial to understand that a machine learning model is only as good as the data 

it is fed. Researchers often publish articles without accurate data collection and not 

having performed thorough exploratory data analysis before deciding on suitable 

input parameters for the outputs to be predicted using ML models. In this study, data 

cleaning had to be performed before deciding on the input parameters to use. Some 

models performed better with good accuracies, others did not, and the forecasting 

trend did not take the entire shape of the historical data, but the results proved that 

ML models can be considered the future of mine water quality predictions. This 

implies that if the data were collected accurately from start to finish, without 
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equipment malfunctioning or missing observations, model performance would have 

been substantially better. 

A mistake commonly done is to use accuracy to evaluate regression models (e.g. 

Khandelwal & Singh, 2005; Maier et al., 2004; Rooki et al., 2011). In ML, if the task is 

to predict a numerical value, then regression models can be used, and if the problem 

is dealing with discrete labels as a result then classification models can be applied. 

ML models need to be evaluated before they can be put in production. Researchers 

find it easy to use accuracy to evaluate ML model performance. However, accuracy 

only works when an observation is similar to a prediction; it focuses on whether the 

prediction is correct or not. In regression models, many predictions are not similar to 

the observations, and sometimes have low errors. Therefore, evaluation metrics 

recommended for regression models are RMSE and MAE as they can indicate how 

spread out the prediction error is, and can also identify the amount of errors in 

measurements. 

The main aim to build ML models is to deploy them and make practical business 

decisions. In this study, a free cloud platform, Heroku, was used to show how ML 

model can be deployed or put in production. Several scientific articles only show how 

good the algorithms can perform, and never educate the readers on the deployment 

of ML models. Platforms such as Microsoft Azure, Amazon Web Services (AWS) 

Lambda, Google Cloud, and Algorithmia can be used to deploy ML models. 

In the next chapter, another method for mine water quality forecasting at a different 

South African mine water treatment plant will be described. In this next chapter, 

neural networks and regression tree algorithms are compared, and the best 

performing model is used to perform final forecasting analysis. Furthermore, robust 
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statistical data analytics techniques (already discussed in CHAPTER 5) to handle the 

missing values and outliers are applied in this next chapter. Finally, the main aim of 

the next chapter is to address the important area of data science which is data 

analytics. In practice, data analytics makes up ≈80% of a machine learning related 

project, and thus proper statistical data analysis methods need to be understood.  
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CHAPTER 7 

7 Data Analytics and Forecasting with Machine Learning 
Models 

7.1 Introduction 

Mining influenced water (MIW), especially acid mine drainage (AMD), but also 

circum-neutral and alkaline drainage, is a threat to the former mining areas in South 

Africa and worldwide (Wolkersdorfer et al., 2022). It is therefore imperative that any 

mine water is treated before it can enter local water courses. Due to the temporal 

changes and the longevity of the mine water quality (Paul et al., 2011; Younger, 

1997), mine or treatment plant operators have to make provisions for the variability in 

the discharge qualities. If these changes can be quantified before they are about to 

occur, chemical stock, electricity or employee planning could be optimised to avoid 

over or under stocking or having too many personnel on site. This chapter, therefore, 

applied machine learning (ML) techniques to forecast MIW parameters for 60 days 

using Fe and acidity exemplified by the former Randfontein Estates gold mine 

located in Randfontein, South Africa (Westrand mine pool). Algorithms tested include 

the multi-layer perceptron (artificial) neural network (ANN), deep neural network 

(DNN), random forest and gradient boosting tree. Multivariate long short-term 

memory (LSTM) was used to generate new data for the best performing algorithm to 

forecast acidity and Fe of MIW. In the Westrand mine pool, MIW is pumped from 

shafts № 8 and № 9 to the treatment plant, and the main aim here is to forecast the 

mine water chemistry so that the plant operators can be prepared for changing water 

qualities ahead of time for optimal chemical dosing. 

Usually, the traditional models fail to use all available parameters to forecast other 

parameters. These traditional models, such as auto regressive integrated moving 
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average (ARIMA) or Box-Jenkins, assume that time series data are linear processes 

(Khashei & Bijari, 2010; Zhang, 2003). Additionally, they forecast data of an 

individual time series by analysing the underlying data structure and using its 

patterns and trends. In many cases, real world scenarios are nonlinear (Zhang et al., 

1998), and thus, relying only on the traditional time series forecasting techniques is 

highly disadvantageous and would be inappropriate for time series datasets of MIW. 

Mine water parameters produce a nonlinear dataset, thus ML models were applied in 

this study. ML models such as the neural networks have gained overwhelming 

attention over the past years in nonlinear time series forecasting (e.g. Chen et al., 

2005; Jain & Kumar, 2007) and have yielded positive results. These techniques, 

including regression tree models, use the whole dataset’s structure and analyse the 

relationships between the data of the parameters in the whole dataset to forecast the 

future patterns and trends. 

In addition to applying ML models, thorough exploratory data analysis needs to be 

practiced to produce models that can forecast the data with accuracy and precision. 

Missing data and anomalies are frequently encountered while collecting MIW data, 

as this was the case with the data used for this study. Missing data compromise the 

statistical power of the study, while anomalies result in overfitting or underfitting of 

the models. Therefore, it is advantageous to apply suitable data interpolation and 

anomaly detection techniques on time series data before attempting to build 

forecasting models. In this chapter, numerical modelling was investigated and 

suitable techniques used to interpolate the missing data. Approaches investigated 

include the basis-spline (B-Spline) curves, non-uniform rational basis spline 

(NURBS) curves and wavelet transform as described earlier in this thesis (  
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CHAPTER 5). In case of anomalies, statistical profiling and predictive confidence 

level approaches were investigated. 

7.2 Study design 

7.2.1 Introduction 

Machine learning models in this chapter were developed in a three-step process, i.e. 

initial forecasting using the multivariate LSTM model, choosing the best performing 

model by comparing the ANN, DNN, random forest and gradient boosting tree 

models and finally performing the final forecasting analysis (Figure 7.1). An LSTM 

model was used to forecast the values of alkalinity, pH and SO4, and these 

forecasted values were supplied to the trained and tested best performing model to 

give the final concentrations of Fe and acidity for 60 days. 

 

Figure 7.1: Machine learning mechanism for the Westrand mine pool water treatment plant 

data 
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7.2.2 Multivariate Long Short-Term Memory (LSTM) 

Multivariate Long Short-Term Memory systems (LSTMs) are a special type of 

recurrent neural networks (RNN) and are mostly favoured because of the 

disadvantages that normal RNNs have. RNNs have no long-term memory, cannot 

use information from distant past, and cannot learn patterns with long dependencies 

(Manaswi, 2018). A way to overcome these issues is by introducing an LSTM which 

has memory cells that enable them to learn long-term patterns (Hochreiter & 

Schmidhuber, 1997; Manaswi, 2018). LSTM’s default behaviour is remembering 

patterns and trends for a long period of time. They have a chain-like structure, similar 

to RNNs. However, the structure of the repeating module differs: for RNN, the 

repeating module is made up of a simple structure, such as a single tanh (hyperbolic 

tangent) layer, while LSTM’s repeating module consist of four neural network layers 

interacting in a unique way (Figure 7.2). 
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Figure 7.2: Mechanism structure for RNN (above) and LSTM cells (below). Inputs are 

labelled as Xt: current input, Ct-1: memory from last LSTM unit and ht-1: output of last LSTM 

unit. Outputs are labelled as Ct: new updated memory and ht: current output. Nonlinearities 

are labelled as σ: sigmoid layer and tanh: tanh layer. Vector operations are labelled as X: 

scaling of information and ∑: adding information; b: bias 

7.2.3 Artificial Neural Network (ANN) and Deep Neural Network (DNN) 

Artificial Neural Networks (ANN) and Deep Neural Networks (DNN) are from the 

same group of neural networks, but only differ by the number of hidden layers. A 

typical neural network is made up of the input layer, hidden layer and output layer, 

and if the network has one hidden layer then it is an ANN structure. A neural network 

that consists of two or more hidden layers is referred to as a DNN model. A fully 

connected layer in the neural network structure is practically composed of the 
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weights and the bias of each neuron, and the input size controls the number of 

weights. Each neuron has its own activation function (Chen et al., 2005; Ekemen 

Keskin et al., 2020; Khashei & Bijari, 2010; Maier et al., 2004; Øyen, 2018). An input 

layer introduces values into the network, and it has no activation function. Hidden 

layer(s) perform the network’s computations. Furthermore, the number of neurons in 

the input layer depends on the parameters that will be used in the network as inputs. 

An output layer makes final prediction for the network, and its neurons depend on 

the parameters that need to be forecasted, while hidden layers can have any number 

of neurons stacked together. Hidden and output layer neurons have an activation 

function such as the sigmoid, rectified linear unit (ReLU) or softmax (normalised 

exponential function). 

7.2.4 Regression tree algorithms 

Regression trees are one of the key algorithms used in complex structures such as 

mine water dataset. They are useful when the data has no obvious linear relationship 

between the input and output parameters. In this study, random forest and gradient 

boosting regression trees were used. Decision trees make the foundation of both the 

algorithms. Regression tree algorithms have a tree-like structure which consists of 

root node, branches and leaf nodes (Figure 7.3; Biau & Scornet, 2016; Zhang & 

Haghani, 2015). A random forest algorithm aims to reduce the variance in complex 

trees while gradient boosting aims to decrease the bias. 
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Figure 7.3: Components of regression tree structure 

7.3 Dataset 

7.3.1 Background 

Sampling and monitoring of mine water is commonly done on a regular basis to 

carefully examine its chemistry. This study uses the South African Westrand mine 

water treatment plant’s data gathered between 2016-03-07 and 2021-07-03. This 

data contains nine parameters, i.e. acidity, alkalinity, electrical conductivity (EC), Fe, 

Mn, pH, SO4, temperature and turbidity, which were used in the units applied by the 

plant operators. These parameters do not have equal numbers of observations i.e. 

some of the measurements are missing. The highest number of observations of an 

individual parameter is 1123 (Table 7.1). Exploratory data analysis which included 

data interpolation and anomaly detection was conducted to prepare the data to be 

used in the machine learning models. 
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Table 7.1: Mine water quality dataset from shaft № 9 of the gold mine in Randfontein; n: 

number of measurements, x̅: average, σ: standard deviation, min.: minimum value, max.: 

maximum value. pH average calculated as –log10[(∑Ci)/(n)], where C is the proton activity 

(www.wolkersdorfer.info/pH_en); measured values and units as reported by the plant 

Parameter n x̅ σ Min. Max. 

Acidity, mg/L CaCO3 1123 406 337 48 1484 

Alkalinity, mg/L CaCO3 1123 155 55 70 298 

EC, mS/m 1123 347 47 187 497 

Fe, mg/L 1111 175 158 14 668 

Mn, mg/L 1111 28.4 7.0 10.0 45.2 

pH, — 1123 6.5 0.3 5.8 9.4 

SO4, mg/L 989 2436 303 1833 3184 

Temperature, °C 1123 19.7 2.1 9.5 26.2 

Turbidity, NTU 1116 23.0 36.2 0.7 275.0 

 

7.3.2 Stationarity test 

Stationarity testing is critical as several statistical applications and models are 

computed based on its results. For example, numerical models are often applied to 

time series data when it is non-stationary, and probabilistic models are sometimes 

useful and accurate when the dataset is stationary (Wackerly et al., 2014). Data 

interpolation and anomaly detection approaches are guided by stationarity tests. 

Therefore, the Augmented Dickey Fuller (ADF) test was used on the dataset to test 

the stationarity of the time series (Table 7.2). A stationary dataset will have a p-value 

that is highly significant (<0.05). Additionally, scatter plots for the dataset were drawn 

to visualise the patterns, trends and seasonality, and identify any stationarity or non-

stationarity properties of the data (Figure 7.4). 

From the statistical results, the p-value obtained for temperature is less than 0.05. 

Therefore, the null hypothesis is rejected, i.e. temperature time series is stationary. 

http://www.wolkersdorfer.info/pH_en
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However, the graphs show that temperature data is oscillating, a prominent 

seasonality can be observed in series. For the other parameters, the p-value for the 

time series is greater than 0.05. Therefore, the null hypothesis is accepted, i.e. the 

dataset for the parameters is non-stationary. Finally, the statistical results show that 

numerical modelling can be used to interpolate missing measurements and detect 

anomalies. 

Table 7.2: Augmented Dickey Fuller test application on dataset to test for stationarity. № 

lags: number of lags, n: number of observations used for ADF regression and critical values 

calculation. Critical values at α = 0.01, 0.05 and 0.10 (–3.437, –2.864 and –2.568) 

Parameter ADF Statistic p-value № lags n 

Acidity –1.474 0.546 6 981 

Alkalinity –1.572 0.498 4 983 

EC –1.953 0.307 18 969 

Fe –1.580 0.493 11 976 

Mn –1.548 0.510 6 981 

pH –2.210 0.202 7 980 

SO4 –1.440 0.563 8 979 

Temperature –3.238 0.018 16 971 

Turbidity –2.739 0.068 22 965 
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Figure 7.4: Temporal mine water data development of Shaft № 9 in the Western Basin of 

the Witwatersrand mines from 2016 to 2021 

7.3.3 Normality test 

Normality tests identify if the data has been sampled from a normal distribution. 

When data are plotted on a frequency distribution, the normal distribution can be 

explained by a bell-curve shape with majority of the observations being around the 

mean value. From the graphs plotted, the data are log-normally, bi-modally and 

multi-modally distributed, and only temperature shows a close to Gaussian 

distribution (Figure 7.5). Mining influenced water data are continuous data, thus the 

normality test is a crucial process for deciding statistical methods and measures of 

central tendency to perform data analysis. Apart from graphical methods, there are 

several statistical techniques applied to test for normality of data. 
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Figure 7.5: Histograms with fitted normal probability distribution function (PDF) curves. 

Normal PDF curves were drawn using the SciPy 1.7.0 module by utilising the mean and 

standard deviations of the data 

In this study, SciPy module version 1.7.0 was used to compute the Kolmogorov-

Smirnov, Shapiro-Wilk, and Anderson-Darling normality tests (Table 7.3). Statistical 

tests conducted using the Kolmogorov-Smirnov and Shapiro-Wilk methods show p-

values for the parameter to be below the 5% significance level, meaning that the 

data do not follow a normal distribution. Using the Anderson-Darling test, the test 

statistics are well above the critical values at α = 0.15, 0.10, 0.05, 0.025 and 0.01 

(0.574, 0.654, 0.784, 0.915 and 1.088), which also implies that the data do not follow 

a normal distribution. 
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Table 7.3: Normality tests using the Kolmogorov-Smirnov, Shapiro-Wilk and Anderson-

Darling tests; n: number of observations. Critical values for α = 0.15, 0.10, 0.05, 0.025 and 

0.01 (0.574, 0.654, 0.0784, 0.915 and 1.088) (Anderson-Darling) 

 Kolmogorov-

Smirnov 

 Shapiro-Wilk  Anderson-

Darling 

Parameter 
n Test 

statistic 

p-

value 

Test 

statistic 

p-

value 

Test statistic 

Acidity 1123 1.00 0.000 0.819 0.000 89.1 

Alkalinity 1123 1.00 0.000 0.861 0.000 66.9 

EC 1123 1.00 0.000 0.946 0.000 27.9 

Fe 1111 1.00 0.000 0.815 0.000 89.2 

Mn 1111 1.00 0.000 0.967 0.000 10.4 

pH 1123 0.99 0.000 0.935 0.000 16.0 

SO4 995 1.00 0.000 0.942 0.000 18.5 

Temperature 1123 1.00 0.000 0.972 0.000 5.4 

Turbidity 1118 0.90 0.000 0.626 0.000 147.5 

 

7.3.4 Data transformation 

As has been shown in the previous section, the dataset is not normally distributed. 

Several statistical methods, especially time-series forecasting techniques, are based 

on the assumption that the data are normally distributed. Thus, building forecasting 

models with un-transformed data often results in inaccurate forecasting results. 

Therefore, data transformation is taking data that are not normally distributed and 

transforming it to a close-to normal distribution (Azzalini & Capitanio, 1999; 

Manikandan, 2010; Xie et al., 2000; Zhang et al., 2017). Data transformation does 

not change the relationship of the variables for mathematical and statistical 
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purposes. So, the procedure is a statistically necessary step towards building models 

that can forecast data with accuracy and precision. 

From the results, it can be seen that alkalinity, EC and Mn have a multi-modal 

distribution, and acidity, Fe, pH and SO4 show a bi-modal distribution. Temperature 

shows a close-to normal distribution and turbidity has a log-normal distribution; 

therefore, only turbidity was transformed. There are several ways to transform the 

data, such as log-normal, square-root, reciprocal, or Box-Cox transformation. In this 

study, a natural log-normal transformation was used: each variable of x was replaced 

by ln(x). Finally, quantile-quantile (Q–Q) and histogram graphs were plotted to test 

the normality of the transformed turbidity data (Figure 7.6). In a Q–Q plot, for a 

normally distributed data, observations lie approximately on a straight line. 

Therefore, the graphs show that turbidity, after being transformed, is close-to a 

normal distribution, slightly showing a bi-modal distribution. 

 

Figure 7.6: Q–Q plot (left) and histogram with a normal PDF curve (right) for the transformed 

turbidity data 

7.4 Anomaly Detection and Data Interpolation 

The dataset used contains sample times with missing measurements resulting from 

equipment malfunctioning or because no sample was taken, and has outliers 
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according to the statistical analysis conducted in the previous sections of this 

chapter. There are several statistical methods to interpolate missing values and 

detect anomalies for time series data, some of which have been discussed in this 

thesis. Predictive confidence level approach fitting nonlinear and linear regressors 

was used to detect anomalies for this dataset. It should be noted that only nonlinear 

regressors (gradient boosting regression models) were relied on to detect anomalies. 

Linear regressors (robust linear regression models) and an additional predictive 

confidence level approach (long short-term memory autoencoder) were used only to 

show the readers that there are other methods to detect anomalies. 

In the approach of fitting a nonlinear regressor, Python’s Scikit-learn 0.24.2 library 

was used to build the gradient boosting regression model. This model was fitted on 

the data with three prediction bands of α = 0.10, 0.50 and 0.90 (Figure 7.7, Annexure 

A). The α = 0.10 prediction band represents the lower bound of the data (real 

observations plotting below this band are considered possible anomalies), while the 

α = 0.90 prediction band represents the upper bound of the data (real observations 

plotting above this band are considered possible anomalies). For the mid-prediction, 

alpha was set to 0.50 and this predicts the median of the original data. Therefore, 

values plotting on the α = 0.50 prediction band were used to replace the possible 

anomalies. 

For the build-up of gradient boosting regression model, for each target output all 

other parameters were used as input variables, e.g. when acidity was set as the 

target output, alkalinity, EC, Fe, Mn, pH, SO4, temperature and turbidity were set as 

input variables. This model used 100 trees, a maximum tree depth of 2 and learning 

rate of 0.05 to perform predictions, and the data were split into training (80%) and 

testing (20%) sets. Gradient boosting model’s objective was to predict the values of 
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the parameters that will possibly be used to build the forecasting models. There are 

several hidden features, some of which are not included in the data, which affect 

each parameter. Therefore, the uncertainty in the estimates was shown by predicting 

the lower (α = 0.10), middle (α = 0.50) and upper (α = 0.90) bands of the 

observations. The loss function of the gradient boosting model was changed to 

quantiles with selected prediction intervals (alphas). This configuration ensures that 

the model performs predictions which correspond to percentiles. 

In addition to showcase more methods that can be applied to detect anomalies, 

robust linear regression was used. It should be noted that linear regressors are only 

suitable for linear data, thus the results from this approach were not relied on to 

make final conclusions. In the linear regressor approach, robust linear regression 

with upper and lower 95% confidence regions and prediction bands were computed. 

Observations that lie outside the 95% prediction bands were regarded as possible 

strong anomalies (Figure 7.8, Annexure B). 

In addition to support the predictive confidence level approaches, deep learning 

techniques, LSTMs and Autoencoders, were used to detect anomalies on the 

dataset. Again, this is an additional method to educate the readers about robust 

ways to detect anomalies. The results from this approach were not used for this 

study. 
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Figure 7.7: Gradient boosting regressors with prediction intervals of α = 0.10, 0.50 and 0.90 

to detect anomalies in mining influenced water data. Only showing graphs for acidity, 

alkalinity, EC, Fe and Mn due to the data size 

Autoencoder is a type of neural network that consists of an encoder and a decoder 

sub-model (Skansi, 2018). It is used to study hidden patterns and trends of raw data. 

In the LSTM Autoencoder model, input values are downscaled, captured as a latent 

vector, and decoded. LSTM Autoencoder is made up of five layers: input sequence, 

encoder, latent vector, decoder and reconstructed sequence (Manaswi, 2018; 

Michelucci, 2018; Skansi, 2018). The models for each parameter were built using 

Python version 3.7.1 within the Anaconda platform, with Tensorflow version 2.5.0 

used as the backend and Keras version 2.4.3 as the core model development 

module. 
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Figure 7.8: Robust linear regression with upper and lower bands of 95% confidence and 

prediction levels. Day 1: 2016-03-07 and day 1955: 2021-07-13 

For each parameter, 90% of the observations were used for the training set while the 

remaining 10% were used for testing the model performance. The LSTM 

Autoencoder structure used in this chapter contained 16 memory units. This 

structure takes in the input data and creates a compressed version of it. Input 

parameters were compressed into a single feature vector, and for the output to 

regenerate the dimension similar to the original input, the repeat vector layer was 

added to convert the feature tensor from one-dimensional to two-dimensional. 

Therefore, the final decoder output layer provided the reconstructed input data. 

LSTM Autoencoder model was fitted over 30 epochs with a batch size of 32 and 

validation split of 10%, and was further compiled using the adaptive moment 

estimation (Adam) optimiser and mean absolute error (MAE) for calculating the loss 
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function. Finally, the models produced a small MAE value which implies that they 

performed relatively well (Figure 7.9, Annexure C). 

 

Figure 7.9: Performance of the LSTM Autoencoder model for each MIW data parameter to 

detect anomalies 

After examining the loss function in the training and testing sets, a suitable threshold 

value for identifying anomalies was computed. Therefore, the reconstruction loss in 

the training and testing sets (Annexure D) were computed to determine when the 

observations of the parameters cross the anomaly threshold (Annexure E). Overall, 

the models show that the data has anomalies, same as the nonlinear gradient 

boosting regression and robust linear regression methods conducted. 

Numerical analysis modelling was applied to interpolate the missing measurements. 

Numerical analysis assumes that the time series data trend and pattern represent an 

unknown function (Wackerly et al., 2014). The main task when applying this 

technique is to find a suitable function for the data so it can be used to interpolate the 

missing values. B-Splines interpolation technique, using Python’s SciPy library, was 



153 
 

used in this study (Annexure F). B-Splines interpolation is a form of interpolation 

where a continuous curve has various piecewise polynomials whose gradients match 

up at the measured data (section 5.3.2). Interpolation in this form takes place 

between two points that have missing values, i.e. a function is derived between the 

points and interpolation takes place. The polynomials are continuous up to their 

second derivative, and this process occurs for every paired-point that has missing 

values between them (Averbuch et al., 2014; Habermann & Kindermann, 2007). 

Finally, the interpolated values fitted well into the known population, and these 

interpolated values did not change the trends and patterns of the original data 

(Figure 7.10). This implies that B-Spline interpolation is an accurate technique for 

non-stationary time series data. 

 

Figure 7.10: Temporal mine water data development of Shaft № 9 in the Western Basin of 

the Witwatersrand mines from 2016 to 2021 including interpolated data 

7.5 Modelling Data 

Data analytics approaches were conducted to detect anomalies and interpolate the 

missing observations by robust statistical techniques described in the previous 
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sections, which provided a “clean” dataset that could be used for modelling. A 

correlation chart of nine parameters, all with 1955 observations, was computed using 

R 4.1.2 on RStudio 1.1.456 (Figure 7.11). Parameters of concern at the Westrand 

mine water treatment plant are acidity and Fe. Therefore, their relationships with 

other parameters were thoroughly examined. The statistical analyses show that both 

acidity and Fe have high correlations with alkalinity, EC, Mn, pH and SO4. 

Additionally, alkalinity, pH and SO4 have good relationships with acidity and Fe with 

correlation coefficients (r) above 0.8. Therefore, alkalinity, pH and SO4 were used as 

input parameters for final forecasting, with acidity and Fe being the target outputs. 

Turbidity and temperature were not used to build the forecasting models because 

they have a poor relationship with the rest of the parameters, as displayed by the 

correlation coefficients. 
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Figure 7.11: A correlation chart with the distribution of each parameter shown on the 

diagonal; on the bottom of the diagonal are the bivariate scatter plots with a fitted line; on the 

top of the diagonal are the values of the correlation with the significance levels shown as 

asterisks: ***p < 0.001, **p < 0.01, *p < 0.05; correlation coefficient font size is related to the 

relationship between the parameters – the stronger the relationship the larger the font size 

and vice versa 

7.6 Model Development and Evaluation 

All the models were trained and tested independently and only the best performing 

model was used in the project to create the final forecasting. The forecasted 

concentrations and values of alkalinity, pH and SO4 by the LSTM model were 

supplied to the best performing model to forecast Fe and acidity concentrations. For 

the LSTM model, three structures were developed with different numbers of the 
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“lookback period” which explains the number of previous time-steps the model needs 

to use to predict the subsequent time-step, epochs, and validation split (Table 7.4). A 

single hidden layer multivariate LSTM model with 32 memory units based on the 

structure variations explained was compiled, and a ReLU activation function was 

used throughout. For all the structure variations, the models were fitted with a batch 

size of 32. The adaptive moment estimation (Adam) optimiser and MSE loss function 

were used in this model, and the low validation and training loss implies good model 

fitting on the new and training data (Table 7.5). 

Table 7.4: Structure variations of the multivariate LSTM model 

Model type Lookback period Epochs Test size 

Structure variation 1 150 days 30 15% 

Structure variation 2 250 days 20 20% 

Structure variation 3 300 days 50 25% 

Different techniques were applied to tune the hyper-parameters for the neural 

network models, including grid search optimisation technique, keras tuner and “trial 

and error” method. For the ANN model, the configuration that yielded better results 

was a model with input layers that consisted of three neurons of alkalinity, pH and 

SO4, while Fe and acidity were used in the output layer with a ReLU activation 

function. The model had one hidden layer of four neurons and a ReLU activation 

function. The DNN architecture consisted of two hidden layers, the first one with four 

neurons and another with two neurons, both with a ReLU activation function. Like 

ANN, input parameters were alkalinity, pH and SO4, with target outputs being Fe and 

acidity. Both the neural network models used a test size of 20%, and the models 

were compiled using the Adam optimiser. They were then fitted for 500 epochs with 

a batch size of 64. The model performances were tested using the MSE and MAE 
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accuracy metrics (Table 7.5). A random forest regression tree model was built using 

150 trees and a maximum depth of 8, with a test split of 20%. A gradient boosting 

regression tree model was compiled using 100 trees, maximum depth of 5 and 

learning rate of 0.05, with a test size of 20%. Regression tree model performances 

were also evaluated using MSE and MAE (Table 7.5). 

Table 7.5: Performances (MSEs and MAEs) for the multivariate LSTM, ANN, DNN, random 

forest and gradient boosting models; RF: random forest, GB: gradient boosting 

 
LSTM1 LSTM2 LSTM3 ANN DNN RF GB 

MSE MSE MSE MSE MAE MSE MAE MSE MAE MSE MAE 

Training 0.0532 0.0485 0.0481 0.0337 0.1308 0.0342 0.1313 0.0094 0.0620 0.0236 0.1039 

Testing 0.0851 0.0790 0.0592 0.0258 0.1190 0.0279 0.1234 0.0192 0.0798 0.0254 0.1050 

Comment Good performance. 

Data leaking. Not a 

good generalisation 

model. 

Data leaking. Not a 

good generalisation 

model. 

Good 

performance. 

Acceptable 

performance. 

Decision  Do not use. Do not use. Use. Do not use. 

 

7.7 Results and Discussions 

Machine learning models developed in this study consisted of a multivariate LSTM 

model which was used to forecast alkalinity, pH and SO4 for 60 days using three 

different structure variations (Figure 7.12). Furthermore, ANN, DNN, random forest 

and gradient boosting models were trained and tested using historical data. Random 

forest displayed an overall best performance and was used to forecast Fe and acidity 

concentrations for the same period as the LSTM model (Figure 7.13). The 

multivariate LSTM forecasting has three different forecasted concentrations for 

alkalinity and SO4 as well as the pH values, which then resulted in the random forest 

model also forecasting three different concentrations for Fe and acidity. With random 

forest using alkalinity, pH and SO4 as input parameters, the forecasted 
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concentrations and values by the LSTM model were fed to the trained random forest 

model. Therefore, the random forest model showed good performance and 

forecasted Fe and acidity concentrations with accuracy as the values fall within the 

population and follows the trend. In addition, the results suggest that ML models can 

be widely applied in mine water time series forecasting analysis. 

The models were evaluated using MSE and MAE, and in all occasions, the error was 

substantially low. However, the neural network models’ training loss was always 

greater than the validation loss, which meant that there is data leaking in the training 

process. Hyper-parameters were rigorously tuned using grid search, keras tuner and 

“trial and error” approach, but training loss continued to be slightly greater than the 

validation loss. Therefore, the final decision was that the models cannot be used for 

final forecasting analysis. Regression tree models displayed better performance, with 

random forest performing better than the gradient boosting. Thus, random forest was 

used to perform final forecasting analysis. 
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Figure 7.12: Forecasted concentrations of alkalinity (top), SO4 (bottom left) and pH values 

(bottom right) using a multivariate LSTM model. Historical data was only used from 2020-08-

01 to allow better visualisation of the forecasting results 
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Figure 7.13: Forecasted concentrations of Fe and acidity using the random forest model. 

Historical data was only used from 2020-08-01 to allow better visualisation of the forecasting 

results 

7.8 Comparing the Measured and Forecasted Data 

Forecasted concentrations of Fe and acidity using random forest model were 

compared with the measured data by calculating the forecasting error (Table 7.6). 

This procedure was also done for the forecasted input parameter values by the 

multivariate LSTM model (Annexure G). Measured data only contains 23 

observations while the forecasting period was for 60 days. This is because sampling 

was not carried out daily for this period, thus the forecasting error was only 

calculated for the available measured data. Furthermore, cross plots of measured 

and forecasted data with a robust regression lines were computed (Figure 7.14). 

Computed plots and calculations show both the low coefficients of determinations 

(r2) and statistical significances. However, the calculated forecasting errors are 

relatively low with only four notable higher errors. The reason for such differences 

may be because of the sampling that was not conducted daily at the treatment plant. 
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Table 7.6: Forecasting error analysis for the random forest model. Error is calculated as: 

|[(measured–forecasted)/(measured)]×100%| 
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309.6 300.0 3.1 284.9 8.0 288.9 6.7 726 692 4.7 661 8.9 671 7.6 

307.2 299.4 2.5 285.6 7.0 293.5 4.4  724 691 4.6 663 8.4 680 6.1 

306.4 286.9 6.4 288.9 5.7 312.4 2.0  724 667 7.8 671 7.3 709 2.1 

301.6 284.9 5.6 289.1 4.1 293.5 2.7  724 661 8.7 672 7.2 680 6.1 

304.0 288.7 5.0 293.5 3.4 311.4 2.4  728 671 7.8 680 6.6 708 2.8 

296.8 285.6 3.8 288.9 2.7 295.8 0.3  702 663 5.5 671 4.4 685 2.4 

263.2 284.9 8.2 288.9 9.8 293.5 11.5  662 661 0.1 671 1.4 680 2.7 

307.8 284.9 7.5 288.9 6.1 295.8 3.9  742 661 10.9 671 9.5 685 7.7 

304.0 286.9 5.6 288.9 5.0 295.8 2.7  708 667 5.7 671 5.2 685 3.3 

289.6 288.9 0.2 295.8 2.2 312.0 7.7  700 671 4.1 685 2.2 708 1.2 

280.8 288.9 2.9 293.5 4.5 295.8 5.4  700 671 4.1 680 2.8 685 2.2 

284.0 288.9 1.7 295.8 4.2 293.5 3.4  710 671 5.5 685 3.5 680 4.2 

287.2 293.5 2.2 310.2 8.0 293.5 2.2  710 680 4.2 706 0.6 680 4.2 

276.8 288.9 4.4 311.2 12.4 289.4 4.5  680 671 1.3 707 4.0 673 1.1 

278.4 288.9 3.8 310.1 11.4 288.7 3.7  684 671 1.9 706 3.2 671 1.8 

264.0 289.4 9.6 310.2 17.5 286.9 8.7  648 673 3.8 706 9.0 667 3.0 

256.0 284.2 11.0 287.9 12.5 299.4 16.9  610 660 8.1 670 9.8 690 13.2 

255.2 284.5 11.5 286.9 12.4 299.6 17.4  614 660 7.6 667 8.7 691 12.5 

248.0 284.2 14.6 287.9 16.1 299.4 20.7  600 660 10.0 670 11.7 690 15.1 

197.6 289.7 46.6 286.9 45.2 299.6 51.6  518 671 29.6 667 28.9 691 33.4 

198.4 299.4 50.9 286.9 44.6 299.6 51.0  530 691 30.3 667 25.9 691 30.4 

208.8 299.4 43.4 286.9 37.4 299.4 43.4  540 690 27.9 667 23.6 690 27.9 

208.8 290.4 39.1 286.9 37.4 299.4 43.4  536 673 25.5 667 24.5 690 28.8 
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Figure 7.14: Cross plots with robust regression lines comparing the measured and 

forecasted Fe and acidity concentrations using the random forest model results; ***p < 0.001, 

**p < 0.01, *p < 0.05 

7.9 Conclusions 

Forecasted concentrations of Fe and acidity by the random forest model fall within 

the historical data population and follow its recent trend and pattern. Therefore, the 

proposed methodology can be applied with certainty and confidence in forecasting 

mine water chemistry. Machine learning forecasting approach proved that the 

application can use data from several parameters to forecast other parameters, i.e. 

the model was developed in a way that the computer learns the trends, patterns and 

seasonality of input data to forecast the target outputs. Parameters in a time series 

are related to each other and influence the outcomes in each parameter’s dataset. 

Therefore, focusing only on one parameter to perform forecasting analysis would be 

inaccurate. Traditional statistical forecasting techniques such as ARIMA or Box-

Jenkins, which forecast data of a parameter by learning its structure without relating 

it to other parameters, should be avoided in future applications. Thus, the forecasting 

technique proposed here will be a useful tool for water treatment plants because it 
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will help in understanding changes in the mine water chemistry and volumes in 

advance. 

It can be concluded that forecasting mine water chemistry by applying ML models is 

a relevant contribution in and addition to mine water treatment plants. Comparing the 

neural network and regression tree models, the results show that random forest 

regression tree model performed better than the other models. Finally, the results 

obtained in this study indicate that regression tree algorithms are powerful and 

important mechanisms to model and forecast the complex mine water time series 

data or nonlinear systems. These approaches were able to analyse the hidden 

patterns, trends and seasonality among the historical mine water dataset in a much 

better and accurate approach compared to traditional time series analysis and 

statistical techniques. Lastly, the findings of this chapter have revealed that 

transforming time series data before using it for modelling is sometimes necessary to 

achieve more accurate forecasting results. 

The next chapter will introduce a machine learning (ML) graphical user interface 

(GUI). This GUI is embedded with several ML algorithms and can perform several 

functions such as loading data, data pre-processing and visualisation. Most 

importantly, a ML algorithm can be trained and tested in this GUI and the built model 

can be downloaded as a pickle file to perform predictive analysis in Python.  
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CHAPTER 8 

8 The Internet of Mine Water — Python Machine 
Learning Graphical User Interface 

8.1 Introduction 

After building several predictive machine learning (ML) models, it was necessary to 

bind them in a user friendly graphical user interface (GUI). In this chapter, a GUI was 

developed using PyQt 5.9.2 software and Qt designer. This kind of a GUI application 

is the first of its kind in the mine water sector. PyQt is a framework written in Python 

to develop desktop applications, and it allows the Qt framework to be used in Python 

code. Qt is a cross-platform application framework created for the use with C++ 

(Harwani, 2011; Rempt, 2001) and was later modified to accommodate Python 

language. For this thesis, the GUI was designed using Qt designer, and the GUI 

pages were linked and programmed using Python language via PyQt package. In 

addition, the Pyinstaller 4.8 library was used to convert the Python files to an 

executable file. Furthermore, InstallForge 1.4.2 was used to combine the files 

Pyinstaller created into a single file installer. This enabled the developed GUI to be 

able to be used in any machine with or without Python or specific Python libraries 

installed. Thus, this might be a necessity for data analysis in several organisations. 

Not every worker in the treatment plant (or any other working environment) can 

programme. Thus, the purpose for the development of the GUI is to ensure that data 

is easily processed and analysed without having to write programming codes. The 

GUI can perform several functions such as loading data in CSV format, pre-

processing the data such as normalising it using different scaling options (e.g. robust 

scaler) and visualising the data, e.g. scatter plots. Additionally, the GUI is embedded 

with several ML algorithms, e.g. gradient boosting regression tree. In a few clicks, 
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data can be loaded, visualised, pre-processed and ML models quickly built without 

having to write the programming code. 

8.2 Overview of the IoMW GUI 

8.2.1 Overview 

The GUI was developed using Python programming language and Qt designer within 

an Anaconda platform, and is entitled “The Internet of Mine Water” (IoMW) (Figure 

8.1). Several Python libraries are part of the GUI: Matplotlib, Seaborn, Numpy, 

Pandas, Scikit-learn, Pickle, and PyQt5 were used to write Python scripts in the 

Spyder integrated development environment (IDE) software, while Pyinstaller was 

used to build the Python files into an executable file. Qt designer was used to design 

the GUI pages, and CSS language was applied for styling of these pages. The files 

created by the Pyinstaller library were compressed into a single installer file using 

InstallForge. Therefore, this ensures that the IoMW can be installed and used in any 

machine that runs on the Windows system (Figure 8.2). IoMW GUI is currently on 

version 1.5 and is being used in this thesis. This software was built to be compatible 

for any Windows operating system, has End-User license agreement, and requires 

space of 1.14 GB to be installed. 
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Figure 8.1: The Internet of Mine Water GUI welcome page 

 

Figure 8.2: The windows setup wizard for the IoMW 1.5 GUI 

The program allows the user to load CSV files and has three regression ML 

algorithms embedded in it (gradient boosting regression tree, random forest 

regression tree and linear regression). These algorithms can be used to build the 

models with the loaded data, and the models can be downloaded as pickle files to be 

used for predictive analysis. To use the software, the user must first load the CSV 
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file, select the target variable, drop columns (optional), visualise the data (optional) 

by plotting scatter/cross plots, histograms and Pearson correlation matrix, and 

normalise the data (optional) using different normalising options such as robust 

scaler, min/max scaler and standard scaler. Therefore, the user can select the ML 

algorithm to build the model (Figure 8.3). 

 

Figure 8.3: The IoMW user guide flow chart 

8.2.2 Main window — the user interface 

8.2.2.1 Data pre-processing 

Data pre-processing is the process in which data are transformed into an 

“understandable” format so it can be used for further statistical analysis. This 

process involves several steps; however, the IoMW application’s data pre-
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processing consists of normalisation and dropping of columns. For the normalising 

option, the user has a choice to normalise the data using the robust scaler, standard 

scaler, min/max scaler, or power transformation (Figure 8.4). 

 

Figure 8.4: The data normalisation options for the IoMW application 

8.2.2.2 Data visualisation 

The IoMW helps the user to visualise the data before building ML models. In this 

part, the user can plot scatter/cross plots (Figure 8.5), histograms, or heatmap. 

Cross plots show one variable on the x-axis and the other on the y-axis, the 

histogram shows the probability on the y-axis, and the heatmap creates a Pearson 

Correlation Matrix with coefficient correlations (r). 
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Figure 8.5: Cross plots on the IoMW application with acidity on the x-axis and pH on the y-

axis 

8.2.2.3 Machine learning algorithms 

The application is embedded with three regression ML algorithms: gradient boosting 

regression tree, random forest regression tree and linear regression (Figure 8.6). 

When the user clicks on one of the algorithms and chooses to train the data by 

clicking “Train”, a new window will open. In the new window, the user is able to tune 

the ML algorithm hyper-parameters such as number of trees and learning rate, and 

the user also has an option to set the test size. Once the user is done training the 

algorithm, the model performance (mean absolute error, mean squared error and 

root mean squared error) will show. If the user is satisfied with the performance, the 

model can be downloaded as a pickle file. Once the user has new data, the pickle 

file model can be used in Python to perform predictive analysis (Figure 8.7). In future 

versions of this software, the user might be able to even perform predictive analysis 

without having to download a pickle model. 
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Figure 8.6: IoMW’s embedded ML algorithms 

 

Figure 8.7: An example Python code of loading a pickle file model and make predictions on 

new data 

In the next chapter, overall concluding remarks and recommendations according to 

the findings of the research conducted are presented. The discoveries of the 

investigations are outlined and recommendations are put forward for further studies 

relating to this thesis.  
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CHAPTER 9 

9 Conclusions and Recommendations 

Improved mine water management techniques are a necessity especially in 

countries encountering polluted water crisis like in South Africa. Even though the 

mining industry contributes a low percentage to the polluted water crisis globally as 

compared to other industries like the agriculture, it still needs to be given undivided 

attention. Clean and safe water is essential to the mining communities, thus properly 

treating and managing mining influenced water (MIW) is important. For mine water 

treatment plants to operate efficiently, they need to have enough chemicals supply, 

energy and human resources. Therefore, the research reported in this thesis 

presented scientifically based, practical tools to predict and forecast relevant mine 

water parameters which will help plant operators to know beforehand which 

chemicals and methods to use to treat and manage polluted MIW (details below). An 

advanced method which integrates information of technology (IoT) to be able to 

identify different mine water samples taken, especially during bulk sampling, was 

also introduced. The presented methods will increase the speed and accuracy of 

sample identification and data processing, and ultimately optimise production and 

mine water management. 

Incorporating IoT and artificial intelligence (AI) techniques in the mines improves the 

current treatment practices and improves the way at which MIW is treated. IoT 

methodologies presented in this thesis ensure that the sampling information and 

results are shared in real-time between the sampler, client and sampling institution. 

AI techniques in this thesis, which involved building predictive machine learning (ML) 

models, allows for the prediction and forecasting of the chemistry of MIW, which will 
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ensure that the treatment plant operators know in advance the quantity and type of 

chemicals and methods to use to treat and manage mine water, and when to start or 

close pumps. 

In this thesis, the advantages of using IoT were shown by making use of the Near-

Field Communication (NFC) technology, i.e. developing the eMetsi application. 

Sampling bottles were incorporated with NFC tags, a NFC mobile application for 

recording on-site parameters during sampling was developed, and a website 

application related to this NFC mobile application was developed to be used for data 

display. This approach proved to be the answer to closing a gap between the 

sampler, laboratory and the sampling institution, i.e. it enables the sharing of 

sampling parameters and results, sampling times and locations in real-time and 

reduces errors encountered when sampling. 

Several programming languages were used to develop the eMetsi application, 

including Extensible Mark-up Language (XML) and Java code for the Android mobile 

application, and Cascading Style Sheets 3 (CSS3) language, Hyper Text Mark-up 

language 5 (HTML5) and JavaScript programming for the website application. The 

applications also required server provisioning and Structured Query Language (SQL) 

configuration to ensure maximal system flexibility. Specifically, eMetsi consists of 

identifying the samples electronically at the time of sampling, storing the on-site 

parameters and sample data, transferring the data to a cloud storage location, and 

allowing the end-users to use the sample identifying data. 

Before ML models can be built, historical data needs to be examined. This thesis, 

based on historical time series data, presented different data cleaning and 

exploratory data analysis approaches which resulted in some being used for 



173 
 

interpolating missing data and detecting anomalies. Numerical models such as the 

B-Spline, NURBS and wavelet transform interpolate the missing data more precisely 

and accurately than the probabilistic models. Anomaly detection proved to be more 

effective when it is conducted by using predictive confidence level methods than 

statistical profiling approach. The approaches presented in this thesis proved that 

nonlinear systems require different exploratory data analysis techniques. 

This thesis tapped in the power of AI by applying different hybrid intelligent systems 

in its studies. Computer models such as long short-term memory (LSTM), random 

forest regression tree, gradient boosting regression tree, artificial neural network 

(ANN) and deep neural network (DNN) were used to predict and forecast the 

chemistry of MIW. The models were trained and tested using Python within an 

Anaconda platform. For the predictive analysis study in the Ekurhuleni mine water 

treatment plant, the performance of the models were evaluated using the mean 

absolute error (MAE) and root mean squared error (RMSE). The algorithms 

produced RMSEs of 0.112 (for LSTM), 0.100 (for gradient boosting) and 0.109 (for 

random forest) for the testing set, and 0.270 (for LSTM), 0.100 (for gradient 

boosting) and 0.049 (for random forest) for the training set. 

Regression tree models were further evaluated using the MAE and produced 0.070 

(for gradient boosting) and 0.074 (for random forest) for the testing set, and 0.069 

(for gradient boosting) and 0.032 (for random forest) for the training set. These 

numbers are indicative for a good fit of the model to the data. For the gradient 

boosting and random forest algorithms, a web application using Flask was created 

and the programming code committed in Github. Github was then linked to the 

Heroku cloud platform, and finally the hybrid model was deployed as a web 

application. 
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Another approach was introduced in this thesis which robustly analysed the data and 

compared the neural networks and regression tree algorithms. This technique was 

applied on the Randfontein mine water treatment plant data and it proved to be 

effective in dealing with nonlinear systems. The models applied in this study include 

the multivariate LSTM, ANN, DNN, random forest and gradient boosting, and were 

evaluated using the mean squared error (MSE) and mean absolute error (MAE). 

Regression tree algorithms performed better than the neural networks, with the 

random forest algorithm yielding better results. Therefore, this model was used to 

finally forecast Fe and acidity for 60 days. 

It can be concluded that incorporating computational intelligence techniques in the 

mining environment can improve current treatment and management practices as it 

allows optimising resource management at the plant. The proposed approaches will 

be an efficient tool to forecasting mine water quality parameters assisting in this task. 

Additionally, the approaches in this thesis are important because they show what 

many studies lack to elaborate, which is how to put ML models into production in a 

real world application. Deployment of ML models is often overlooked, especially in 

academia. This thesis will assist people in industries seeking to maximise production 

and optimise management practices by informing them of the importance of AI and 

how to put good performing models into production. In addition, the explained 

techniques in this thesis will be an important booster to the mining industry, 

especially mine water treatment plant departments. Prediction and forecasting of 

relevant mine water parameters in mine water treatment plants is an important 

practical tool to optimise mine water management. 

Finally, the IoMW graphical user interface (GUI) was developed to ensure that 

people from the industry find it easy to implement predictive ML models by doing 
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most of the work in the GUI and only applying less than five lines of Python code to 

reach conclusive results. The IoMW GUI application helps the user to perform 

important functions without having to write any programming code. With the IoMW 

application, the user can analyse the data and build predictive ML models.  

This thesis presented a certain portion of the internet of mine water. More work still 

needs to be conducted to develop a fully functional IoMW; however, this thesis can 

be used as a “stepping stone”. Most of the presented industry 4.0 technologies in 

some parts of this thesis could not be explored due to time constraints, financial 

matters, and unavailability of these technologies in the mines. A fully functional 

IoMW would have technologies such as AI, IoT, wireless sensor networks, big data, 

quantum computing and 5G network; and this thesis only managed to explore AI and 

IoT. Additionally, the developed technological tools (eMetsi and IoMW GUI) in this 

thesis will be further improved. For example, the eMetsi application can be upgraded 

in future to be able to integrate big data systems. More ML algorithms, data pre-

processing and visualisation options can be included in the IoMW GUI to allow the 

application to be more versatile. In conclusion, this thesis showed that AI and IoT 

techniques are applicable to mine water treatment plants and that it is possible to 

reliably forecast MIW parameters for a certain period.  
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Annexure A Gradient boosting regressors to detect 
anomalies 

 



205 
 

Annexure B  Robust linear regression with upper and 
lower bands of 95% confidence and prediction levels 
for anomaly detection 
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Annexure C  LSTM Autoencoder Model 
performances for anomaly detection 

 

  



207 
 

Annexure D  LSTM Autoencoder Loss distribution 
(training and testing sets) 
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Annexure E LSTM Autoencoder Anomaly threshold 
(training and testing sets) 
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Annexure F  Interpolated missing values using B-
Splines 
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Annexure G Forecasting error analysis using the 
multivariate LSTM results 

Error analysis for the Alkalinity and pH parameters 
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212 212 0.1 207 2.4 202 4.6 6.38 6.38 0.0 6.35 0.4 6.33 0.8 

214 210 2.0 206 3.9 201 6.3  6.39 6.37 0.3 6.35 0.7 6.32 1.1 

216 205 5.2 202 6.3 198 8.6  6.32 6.34 0.4 6.33 0.2 6.31 0.2 

214 206 3.7 203 5.1 201 6.2  6.32 6.35 0.5 6.33 0.2 6.32 0.0 

226 203 10.1 201 11.2 198 12.2  6.40 6.34 1.0 6.32 1.2 6.31 1.4 

204 206 1.0 202 0.8 200 2.0  6.37 6.35 0.3 6.33 0.6 6.32 0.8 

196 207 5.5 202 3.3 200 2.3  6.37 6.35 0.3 6.33 0.6 6.32 0.8 

216 206 4.4 202 6.4 200 7.4  6.21 6.35 2.3 6.33 1.9 6.32 1.8 

214 204 4.4 202 5.8 200 6.6  6.36 6.34 0.3 6.33 0.5 6.32 0.7 

204 202 1.2 200 2.0 197 3.2  6.36 6.33 0.5 6.32 0.6 6.31 0.8 

200 202 0.9 200 0.1 200 0.2  6.32 6.33 0.1 6.32 0.0 6.32 0.0 

202 202 0.1 200 0.9 201 0.6  6.26 6.33 1.1 6.32 1.0 6.32 1.0 

214 201 6.2 199 7.0 200 6.4  6.37 6.32 0.7 6.31 0.9 6.32 0.8 

208 201 3.3 198 4.8 203 2.6  6.34 6.33 0.2 6.31 0.5 6.33 0.1 

212 202 4.7 199 6.3 203 4.1  6.26 6.33 1.1 6.31 0.8 6.34 1.2 

204 203 0.7 199 2.4 205 0.3  6.39 6.33 0.9 6.31 1.2 6.34 0.7 

200 207 3.6 204 1.8 210 5.2  6.41 6.36 0.8 6.34 1.1 6.37 0.6 

202 208 2.9 204 1.1 211 4.4  6.34 6.36 0.3 6.34 0.0 6.37 0.5 

200 207 3.7 204 1.9 210 5.0  6.32 6.36 0.6 6.34 0.3 6.37 0.8 

182 209 14.7 204 12.2 211 15.9  6.31 6.36 0.8 6.34 0.5 6.37 1.0 

178 210 17.7 205 14.9 211 18.4  6.31 6.37 0.9 6.34 0.5 6.37 1.0 

182 210 15.4 205 12.4 210 15.4  6.37 6.37 0.0 6.34 0.4 6.37 0.0 

190 209 10.2 204 7.6 210 10.5  6.34 6.37 0.4 6.34 0.0 6.37 0.5 
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Error analysis for the SO4 parameter 

Measured SO4, 

mg/L 

LSTM Forecast 

1 

Error 

% 

LSTM Forecast 

2 

Error 

% 

LSTM Forecast 

3 

Error 

% 

2500 2459 1.7 2433 2.7 2409 3.7 

2372 2448 3.2 2427 2.3 2400 1.2 

2504 2423 3.2 2410 3.8 2385 4.8 

2532 2429 4.1 2414 4.7 2401 5.2 

2576 2414 6.3 2402 6.8 2390 7.2 

2520 2429 3.6 2410 4.4 2397 4.9 

2348 2433 3.6 2410 2.7 2400 2.2 

2476 2431 1.8 2409 2.7 2398 3.2 

2444 2421 1.0 2406 1.6 2397 1.9 

2460 2406 2.2 2397 2.6 2385 3.1 

2400 2407 0.3 2398 0.1 2395 0.2 

2460 2407 2.2 2398 2.5 2401 2.4 

2476 2401 3.0 2393 3.4 2399 3.1 

2524 2403 4.8 2388 5.4 2412 4.5 

2404 2408 0.2 2390 0.6 2414 0.4 

2388 2411 1.0 2393 0.2 2422 1.4 

2420 2435 0.6 2416 0.2 2451 1.3 

2468 2438 1.2 2420 2.0 2453 0.6 

2500 2436 2.6 2417 3.3 2449 2.0 

2364 2443 3.3 2419 2.3 2455 3.8 

2416 2447 1.3 2421 0.2 2453 1.5 

2256 2449 8.6 2421 7.3 2449 8.6 

2276 2446 7.5 2421 6.4 2449 7.6 

 


