|   | 
Details
   web
Records
Author Faulkner, B.B.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Treatment of acid mine drainage by passive treatment systems Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical reactions; constructed wetlands; controls; depositional environment; ground water; heavy metals; limestone; microorganisms; pollution; sedimentary rocks; substrates; surface water; techniques; United States; water pollution; water treatment; West Virginia; wetlands 22, Environmental geology
Abstract (up)
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by passive treatment systems; GeoRef; English; 2004-051153; Edition: 2 References: 13; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6363 Serial 384
Permanent link to this record
 

 
Author Calabrese, J.P.; Sexstone, A.J.; Bhumbla, D.K.; Skousen, J.G.; Bissonnette, G.K.; Sencindiver, J.C.
Title Long-term study of constructed model wetlands for treatment of acid mine drainage Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 406
Keywords acid mine drainage; alkalinity; biodegradation; field studies; iron; metals; models; monitoring; pH; pollution; reduction; remediation; sulfates; surface water; water quality; wetlands 22, Environmental geology
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Long-term study of constructed model wetlands for treatment of acid mine drainage; GeoRef; English; 2007-045256; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 Approved no
Call Number CBU @ c.wolke @ 6631 Serial 426
Permanent link to this record
 

 
Author Burnett, M.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Injection of limestone into underground mines for AMD control Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical composition; coal fields; concentration; environmental analysis; environmental management; experimental studies; geologic hazards; ground water; hazardous waste; heavy metals; hydrology; land subsidence; limestone; mines; mining; mining geology; pH; pollution; Preston County West Virginia; reclamation; runoff; sedimentary rocks; Sovern Run Mine; surface water; underground mining; United States; waste management; water quality; West Virginia 22, Environmental geology
Abstract (up)
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Injection of limestone into underground mines for AMD control; GeoRef; English; 2004-051160; Edition: 2 References: 2; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 6370 Serial 427
Permanent link to this record
 

 
Author Skousen, J.G.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 130 pp
Keywords acid mine drainage mine water remediation
Abstract (up) An array of techniques have been developed during the last several decades to abate or control pollution by acid mine drainage (AMD) from coal and metal mines. Although most of these techniques are successful in eliminating or decreasing the deleterious effects of AMD in some situations, they are unsuccessful in others. Due to the inherent variability between mines and environmental conditions, no one abatement or treatment technique is effective on all sites, and selection of the best method on each site is difficult given the array of methods available. The techniques also vary in the type and size of problem they are capable of handling. Their individual costs, effectiveness, and maintenance are also important considerations. Therefore, accurate information is needed to understand the limitations of the various methods and their response to various site variables. Continued research is imperative for field testing of existing technologies, as well as continued development of new technologies. At present, there is no authoritative guide or manual to assist in evaluating the best technique for a given situation. In order to continue to mine coal and other minerals without harming the environment, the best science and techniques must be identified and implemented in order to minimize the production of AMD. To accomplish this goal, the Acid Mine Drainage Technology Initiative (ADTI) was organized to promote communication among scientists and engineers dealing with AMD, and to develop a consensus on the identification and optimum usage of each method. The intent is to provide information on selection of appropriate techniques for specific problems that will ultimately lead to a higher level of success in avoidance of AMD and remediation of existing sources, at a savings in cost and staff time, and with greater assurance that a planned technique will accomplish its objective. This effort will result in enhancement of mine drainage quality, improvement in stream cleanup and its cost effectiveness, and development of a mechanism for technology transfer.
Address
Corporate Author Thesis
Publisher The National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; FG als Datei vorhanden 3 Abb. Approved no
Call Number CBU @ c.wolke @ 17424 Serial 243
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Simmons, J.
Title Long-term Performance of Passive Acid Mine Drainage Treatment Systems Type Journal Article
Year 2003 Publication Mine Water Env. Abbreviated Journal
Volume 22 Issue 3 Pages 118-129
Keywords acidity acid load aerobic wetlands anaerobic wetlands anoxic limestone drains limestone leach beds open limestone channels slag leach beds successive alkalinity producing systems vertical flow wetlands
Abstract (up) State and federal reclamation programs, mining operators, and citizen-based watershed organizations have constructed hundreds of passive systems in the eastern U.S. over the past 20 years to provide reliable, low cost, low maintenance mine water treatment in remote locations. While performance has been reported for individual systems, there has not been a comprehensive evaluation of the performance of each treatment type for a wide variety of conditions. We evaluated 83 systems: five types in eight states. Each system was monitored for influent and effluent flow, pH, net acidity, and metal concentrations. Performance was normalized among types by calculating acid load reductions and removals, and by converting construction cost, projected service life, and metric tonnes of acid load treated into cost per tonne of acid treated. Of the 83 systems, 82 reduced acid load. Average acid load reductions were 9.9 t/yr for open limestone channels (OLC), 10.1 t/yr for vertical flow wetlands (VFW), 11.9 t/yr for anaerobic wetlands (AnW), 16.6 t/yr for limestone leach beds (LSB), and 22.2 t/yr for anoxic limestone drains (ALD). Average costs for acid removal varied from $83/t/yr for ALDs to $527 for AnWs. Average acid removals were 25 g/m2/day for AnWs, 62 g/m2/day for VFWs, 22 g/day/t for OLCs, 28 g/day/t for LSBs, and 56 g/day/t for ALDs. It appears that the majority of passive systems are effective but there was wide variation within each system type, so improved reliability and efficiency are needed. This report is an initial step in determining passive treatment system performance; additional work is needed to refine system designs and monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Long-term Performance of Passive Acid Mine Drainage Treatment Systems; 1; FG 1 Abb., 7 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17454 Serial 187
Permanent link to this record