|   | 
Details
   web
Records
Author Carlson, L.; Kumpulainen, S.
Title Retention of harmful elements by ochreous precipitates of iron Type Journal Article
Year 2001 Publication Tutkimusraportti Geologian Tutkimuskeskus Abbreviated Journal
Volume - Issue 154 Pages 30-33
Keywords Surface water quality Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 9) geological abstracts: environmental geology (72 14 2) iron oxide precipitation chemistry sulfate arsenate heavy metal pH water pollution remediation
Abstract The capability of soil fines to fix harmful elements, e.g. heavy metals and arsenic, depends on specific surface area and other characteristics, such as surface charge. In the pH-range typical of natural waters (pH 5,5-7,5), the surfaces of fine-grained silicate particles and manganese oxides are negatively charged; consequently cations, such as heavy metals, fix effectively to them. The iron oxide surfaces are usually positively charged and typically fix anions, such as sulphate and arsenate. Retention of anions is especially extensive to precipitates formed from acid mine drainage (pH 2,5-5,0). For example, precipitates found at Paroistenjarvi mine, Finland, contain more than 70 g/kg of arsenic (dry matter). Adsorbed anions, e.g. sulphate, enhance the capacity of precipitate to fix heavy metal cations in low-pH environments.
Address L. Carlson, Tehtaankatu 25 A 4, Helsinki FIN-00150, Finland liisa.carlson@kolumbus.fi
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0781-4240 ISBN Medium
Area Expedition Conference
Notes Retention of harmful elements by ochreous precipitates of iron; 2392974; Oksidiset rautasaostumat haitallisten aineiden pidattajina. Finland 7; Geobase Approved no
Call Number CBU @ c.wolke @ 17533 Serial 421
Permanent link to this record
 

 
Author Ciftci, H.; Akcil, A.
Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal
Volume 45 Issue 1 Pages 35-45
Keywords acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology
Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9416 ISBN Medium
Area Expedition Conference
Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no
Call Number CBU @ c.wolke @ 16444 Serial 416
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J.
Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 12 Pages 2188-2200
Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry
Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no
Call Number CBU @ c.wolke @ 17248 Serial 44
Permanent link to this record
 

 
Author Davis, L.K.
Title Constructed wetlands handbook Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 409
Keywords acid mine drainage; constructed wetlands; mining geology; pollution; remediation; waste disposal; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands handbook; GeoRef; English; 2007-045261; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 Approved no
Call Number CBU @ c.wolke @ 6633 Serial 406
Permanent link to this record
 

 
Author Dillard, G.
Title A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
Year 2000 Publication Pay Dirt Abbreviated Journal
Volume 734 Issue Pages 10-11
Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5822 Serial 401
Permanent link to this record