|   | 
Details
   web
Records
Author Laspidou, C.S.
Title Constructed wetlands technology and water quality improvement: Recent advances Type Journal Article
Year 2005 Publication Proceeding of the 9th International Conference on Environmental Science and Technology Vol B – Poster Presentations Abbreviated Journal
Volume Issue Pages B503-B508
Keywords mine water treatment
Abstract Today's demands for improved water quality in receiving waters are widespread and require the implementation of systems that are natural, low-cost and minimal-maintenance that could effectively treat polluted discharges. Wetlands are such systems and are recently receiving a lot of attention from scientists, ecologists and engineers, as they are deemed appropriate for reducing the impact of effluent and run-off on receiving waters. Since a large part of natural wetlands have been lost-about 53% of them in the United States from the 1780s to the 1980s-management options for improving receiving water quality, water reclamation and reuse involve the application of constructed wetlands technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands technology and water quality improvement: Recent advances; Isip:000237755500082; Times Cited: 0; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 16966 Serial 152
Permanent link to this record
 

 
Author Whitehead, P.G.
Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 15-21
Keywords mine water treatment
Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 16972 Serial 116
Permanent link to this record
 

 
Author Maniatis, T.
Title Biological removal of arsenic from tailings pond water at Canadian mine Type Journal Article
Year 2005 Publication Arsenic Metallurgy Abbreviated Journal
Volume Issue Pages 209-214
Keywords mine water treatment
Abstract Applied Biosciences has developed a biological technology for removal of arsenic, nitrate, selenium, and other metals from mining and industrial waste waters. The ABMet((R)) technology was implemented at a closed gold mine site in Canada for removing arsenic from tailings pond water. The system included six bioreactors that began treating water in the spring of 2004. Design criteria incorporated a maximum flow of 567 L/min (150 gallons per minute) and water temperatures ranging from 10 degrees C to 15 degrees C. Influent arsenic concentrations range from 0.5 mg/L to 1.5 mg/L. The ABMet((R)) technology consistently removes arsenic to below detection limits (0.02 mg/L). Data from the full scale system will be presented, as well as regulatory requirements and site specific challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological removal of arsenic from tailings pond water at Canadian mine; Isip:000228449400016; Times Cited: 0; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 16976 Serial 154
Permanent link to this record
 

 
Author Ayala, J.; Fernández, B.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 649-654
Keywords flying ash copper cyanide gold mine tailing ponds detoxification
Abstract The objective of this study was to examine the use of flying ash to remove the copper cyanide species from gold mine effluents. In order to discharge them safely with minimum impact to the environment the effluents must be treated in such a way that the legal conditions were attained with the lowest possible cost. This paper presents the treatment of cyanide solution originating from tailing ponds at the end of detoxification by direct contact with flying ash.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes Adsorption of copper cyanide species from tailings pond on flying ash; 1; AMD ISI | Wolkersdorfer; FG 'aha' 4 Abb., 6 Tab. Approved no
Call Number (up) CBU @ c.wolke @ 17296 Serial 472
Permanent link to this record
 

 
Author Greben, H.A.; Matshusa, M.P.; Maree, J.P.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 339-345
Keywords water pollution biological Sulphate removal technology sulphate acidity metals treatment technique
Abstract Mining is implicated as a significant contributor to water pollution, the prime reason being, that pyrites oxidize to sulphuric acid when exposed to air and water. Mine effluents, often containing sulphate, acidity and metals, should be treated to render it suitable for re-use in the mining industry, for irrigation of crops or for discharge in water bodies. This study describes the removal of all three mentioned pollutants in mine effluents, from different origins, containing different concentrations of various metals. The objectives were achieved, applying the biological sulphate removal technology, using ethanol as the carbon and energy source. It was shown that diluting the mine effluent with the effluent from the biological treatment, the pH increased due to the alkalinity in the treated water while the metals precipitated with the produced sulphide. When this treatment regime was changed and the mine water was fed undiluted, it was found that the metals stimulated the methanogenic bacteria (MB) as trace elements. This resulted in a high COD utilization of the MB, such that too little COD was available for the SRB. Metal removal in all three studies was observed and in most instances the metals were eliminated to the required disposal concentration.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes The biological Sulphate removal technology; 1; AMD ISI | Wolkersdorfer; FG 'aha' 3 Abb., 9 Tab. Approved no
Call Number (up) CBU @ c.wolke @ 17347 Serial 367
Permanent link to this record