|   | 
Details
   web
Records
Author Boonstra, J.
Title Biological treatment of acid mine drainage Type Journal Article
Year 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal
Volume 9 Issue Pages 559-567
Keywords mine water treatment
Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Biological treatment of acid mine drainage; Isip:000086245100058; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17117 Serial 176
Permanent link to this record
 

 
Author Sierra-Alvarez, R.
Title Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors Type Journal Article
Year 2006 Publication Water Sci. Technol. Abbreviated Journal
Volume 54 Issue 2 Pages 179-185
Keywords mine water treatment
Abstract The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed V with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 Mg Cu2+vertical bar(-1); 10 mg Ni2+vertical bar(-1), 10 mg Zn2+vertical bar(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation Cn rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors; Wos:000240449300024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16943 Serial 106
Permanent link to this record
 

 
Author Whitehead, P.G.
Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 15-21
Keywords mine water treatment
Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16972 Serial 116
Permanent link to this record
 

 
Author Olaniran, A.O.
Title Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes Type Journal Article
Year 2006 Publication Chemosphere Abbreviated Journal
Volume 63 Issue 4 Pages 600-608
Keywords mine water treatment
Abstract The accumulation of dichloroethenes (DCEs) as dominant products of microbial reductive dechlorination activity in soil and water represent a significant obstacle to the application of bioremediation as a remedial option for chloroethenes in many contaminated systems. In this study, the effects of biostimulation and/or bioaugmentation on the biodegradation of cis- and trans-DCE in soil and water samples collected from contaminated sites in South Africa were evaluated in order to deter-mine the possible bioremediation option for these compounds in the contaminated sites. Results from this study indicate that cis- and trans-DCE were readily degraded to varying degrees by natural microbial populations in all the soil and water samples tested, with up to 44% of cis-DCE and 41% of trans-DCE degraded in the untreated soil and water samples in two weeks. The degradation rate constants ranged significantly (P < 0.05) between 0.0938 and 0.560 wk(-1) and 0.182 and 0.401 wk(-1), for cis- and trans-DCE, respectively, for the various treatments employed. A combination of biostimulation and bioaugmentation significantly increased the biodegradation of both compounds within two weeks; 14% for cis-DCE and 18% for trans-DCE degradation, above those observed in untreated soil and water samples. These findings support the use of a combination of biostimulation and bioaugmentation for the efficient biodegradation of these compounds in contaminated soil and water. In addition, the results clearly demonstrate that while naturally occurring microorganisms are capable of aerobic biodegradation of cis- and trans-DCE, biotransformation may be affected by several factors, including isomer structure, soil type, and the amount of nutrients available in the water and soil. (c) 2005 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes; Wos:000237379500007; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16936 Serial 111
Permanent link to this record
 

 
Author Goulet, R.R.
Title Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance Type Journal Article
Year 2001 Publication Ecological Engineering Abbreviated Journal
Volume 17 Issue 4 Pages 373-384
Keywords mine water treatment
Abstract Surface-flow wetlands are generally considered sinks for Fe and Mn but they may also export and affect the partitioning of these metals. This study was undertaken to evaluate the effect of a young constructed wetland on the retention and transformation of both dissolved and particulate Fe and Mn. Duplicate water samples were collected every three days at the inlet and outlet structures of the Monahan Wetland, Kanata, Ontario, from spring of 1997 to 1999. While on a yearly basis the wetland showed significant retention of che dissolved phase, the retention of total Fe and Mn was poor. There were strong seasonal differences in retention and, during the winter, the wetland was a source. The wetland transformed dissolved into particulate Fe and Mn from spring to fall whereas during the winter, dissolved Fe and Mn were released. Changes in pH, alkalinity and temperature could explain 11% and 40% of the outlet variation in the ratio of dissolved to total Fe and Mn respectively. Furthermore, from spring to late summer, planktonic algal biomass was negatively related to the ratio of dissolved to total Fe and Mn implying a role in Fe and Mn transformations in young wetlands where emergent and submerged vegetation have yet to dominate the system. (C) 2001 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance; Wos:000169881900004; Times Cited: 5; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17050 Serial 124
Permanent link to this record