|   | 
Details
   web
Records
Author Anonymous
Title Red menace -- Alumina waste products neutralised – As a result of the standard aluminium extraction process, a large amount of of highly alkaline 'red mud' is produced, containing various minerals left over from the bauxite, and this must be disposed of safely, treated or stored. Using a partial-neutralising process involving sea water, Virotec has developed an environmentally responsible process that turns the mud into a mild alkali that is very good at neutralising acid in, for example, acid mine waste Type Journal Article
Year 2003 Publication Materials world Abbreviated Journal
Volume (up) 11 Issue 6 Pages 22-25
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-8638 ISBN Medium
Area Expedition Conference
Notes Red menace -- Alumina waste products neutralised – As a result of the standard aluminium extraction process, a large amount of of highly alkaline 'red mud' is produced, containing various minerals left over from the bauxite, and this must be disposed of safely, treated or stored. Using a partial-neutralising process involving sea water, Virotec has developed an environmentally responsible process that turns the mud into a mild alkali that is very good at neutralising acid in, for example, acid mine waste; 1645797473; UB Clausthal <104> TU Freiberg <105> HSU Hamburg <705> TIB/UB Hannover <89> THULB Jena <27> UB Magdeburg <Ma 9> TUB München <91>; OLC-SSG Geowissenschaften – Online Contents-Sondersammelgebiete Approved no
Call Number CBU @ c.wolke @ 2109 Serial 480
Permanent link to this record
 

 
Author Banks, S.B.
Title The UK coal authority minewater-treatment scheme programme: Performance of operational systems Type Journal Article
Year 2003 Publication Jciwem Abbreviated Journal
Volume (up) 17 Issue 2 Pages 117-122
Keywords mine water treatment
Abstract This paper summarises the performance of minewater-treatment schemes which are operated under the Coal Authority's National Minewater Treatment Programme. Commonly-used design criteria and performance indicators are briefly discussed, and the performance of wetland systems which are operated by the Coal Authority is reviewed. Most schemes for which data are available remove more than 90% iron, and average area-adjusted iron-removal rates range from 1.5 to 5.5 g Fe/m(2). d. These values, which are based on performance calculations, can be distorted by several factors, including the practice of maximising wetland areas to make best use of available land. Removal rates are limited by influent iron loadings, and area-adjusted iron-removal rates should be used with caution when assessing wetland performance. Sizing criteria for all types of treatment system might be refined if more detailed data become available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-7359 ISBN Medium
Area Expedition Conference
Notes May; The UK coal authority minewater-treatment scheme programme: Performance of operational systems; Wos:000183641000009; Times Cited: 1; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10018.pdf; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17457 Serial 9
Permanent link to this record
 

 
Author Adam, K.
Title Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites Type Journal Article
Year 2003 Publication Minerals and Energy Raw Materials Report Abbreviated Journal
Volume (up) 18 Issue 4 Pages 25-35
Keywords Waste Management and Pollution Policy Pollution and waste management non radioactive geographical abstracts: human geography environmental planning (70 11 5) geological abstracts: environmental geology (72 14 2) waste disposal waste management solid waste mining industry acid mine drainage Europe Eurasia
Abstract Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.
Address K. Adam, ECHMES Ltd, Mikras Asias 40-42, Athens 11527, Greece echmes@otenet.gr
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1404-1049 ISBN Medium
Area Expedition Conference
Notes Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites; 2582509; Norway 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17510 Serial 492
Permanent link to this record
 

 
Author Konieczny, K.
Title Mining waters treatment for drinking and economic aims Type Journal Article
Year 2003 Publication VI National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering Abbreviated Journal
Volume (up) 21 Issue Pages 333-348
Keywords mine water treatment
Abstract Poland is comparatively a poor country in relation to resources of drinking water. In count per capita it is oil one of the last places in Europe. Such state forces to save resources for example by closing water circulations and also desalination of mining waters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mining waters treatment for drinking and economic aims; Isip:000245280000020; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7958 Serial 149
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Simmons, J.
Title Long-term Performance of Passive Acid Mine Drainage Treatment Systems Type Journal Article
Year 2003 Publication Mine Water Env. Abbreviated Journal
Volume (up) 22 Issue 3 Pages 118-129
Keywords acidity acid load aerobic wetlands anaerobic wetlands anoxic limestone drains limestone leach beds open limestone channels slag leach beds successive alkalinity producing systems vertical flow wetlands
Abstract State and federal reclamation programs, mining operators, and citizen-based watershed organizations have constructed hundreds of passive systems in the eastern U.S. over the past 20 years to provide reliable, low cost, low maintenance mine water treatment in remote locations. While performance has been reported for individual systems, there has not been a comprehensive evaluation of the performance of each treatment type for a wide variety of conditions. We evaluated 83 systems: five types in eight states. Each system was monitored for influent and effluent flow, pH, net acidity, and metal concentrations. Performance was normalized among types by calculating acid load reductions and removals, and by converting construction cost, projected service life, and metric tonnes of acid load treated into cost per tonne of acid treated. Of the 83 systems, 82 reduced acid load. Average acid load reductions were 9.9 t/yr for open limestone channels (OLC), 10.1 t/yr for vertical flow wetlands (VFW), 11.9 t/yr for anaerobic wetlands (AnW), 16.6 t/yr for limestone leach beds (LSB), and 22.2 t/yr for anoxic limestone drains (ALD). Average costs for acid removal varied from $83/t/yr for ALDs to $527 for AnWs. Average acid removals were 25 g/m2/day for AnWs, 62 g/m2/day for VFWs, 22 g/day/t for OLCs, 28 g/day/t for LSBs, and 56 g/day/t for ALDs. It appears that the majority of passive systems are effective but there was wide variation within each system type, so improved reliability and efficiency are needed. This report is an initial step in determining passive treatment system performance; additional work is needed to refine system designs and monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Long-term Performance of Passive Acid Mine Drainage Treatment Systems; 1; FG 1 Abb., 7 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17454 Serial 187
Permanent link to this record