|   | 
Details
   web
Records
Author Harrington, J.M.
Title In situ treatment of metals in mine workings and materials Type Journal Article
Year (up) 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal
Volume Issue Pages 251-261
Keywords mine water treatment
Abstract Contact of oxygen contained in air and water with mining materials can increase the solubility of metals. In heaps leached by cyanide, metals can also be made soluble through complexation with cyanide. During closure, water in heaps, and water collected in mine workings and pit lakes may require treatment to remove these metals. In situ microbiological treatment to create reductive conditions and to precipitate metals as sulfides or elemental metal has been applied at several sites with good success. Treatment by adding organic carbon to stimulate in situ microbial reduction has been successful in removing arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, tin, uranium, and zinc to a solid phase. Closure practices can affect the success of in situ treatment at mining sites, and affect the stability of treated materials. This paper defines factors that determine the cost and permanence of in situ treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of metals in mine workings and materials; Isip:000175560600034; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17037 Serial 161
Permanent link to this record
 

 
Author Younger, P.L.; Cornford, C.
Title Mine water pollution from Kernow to Kwazulu-Natal; geochemical remedial options and their selection in practice Type Journal Article
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords Africa Bolivia case studies Cornwall England cost decision-making decontamination Durham England England Europe geochemistry Great Britain Hlobane Colliery hydrology Kernow England KwaZulu-Natal South Africa metals Milluni Mine mine drainage monitoring pollutants pollution Quaking Houses England remediation South Africa South America South Crofty Mine South-West England Southern Africa United Kingdom water treatment Western Europe Wheal Jane Mine 22, Environmental geology
Abstract Pollution by mine drainage is a major problem in many parts of the world. The most frequent contaminants are Fe, Mn, Al and SO (sub 4) with locally important contributions by other metals/metalloids including (in order of decreasing frequency) Zn, Cu, As, Ni, Cd and Pb. Remedial options for such polluted drainage include monitored natural attenuation, physical intervention to minimise pollutant release, and active and passive water treatment technologies. Based on the assessment of the key hydrological and geochemical attributes of mine water discharges, a rational decision-making framework has now been developed for deciding which (or which combinations) of these options to implement in a specific case. Five case studies illustrate the application of this decision-making process in practice: Wheal Jane and South Crofty (Cornwall), Quaking Houses (Co Durham), Hlobane Colliery (South Africa) and Milluni Tin Mine (Bolivia). In many cases, particularly where the socio-environmental stakes are particularly high, the economic, political and ecological issues will prove even more challenging than the technical difficulties involved in implementing remedial interventions which will be robust in the long term. Hence truly “holistic” mine water remediation is a multi-dimensional business, involving teamwork by a range of geoscientific, hydroecological and socio-economic specialists.
Address
Corporate Author Thesis
Publisher Proceedings of the Ussher Society, vol.10, Part 3 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 40th annual meeting of the Ussher Society Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2004-019557; 40th annual meeting of the Ussher Society, Saint Austell, United Kingdom, Jan. 3-4, 2002 Scott Simpson lecture References: 39; illus. incl. 3 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16506 Serial 194
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S.
Title Type Book Whole
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages 464 pp
Keywords mine water hydrology
Abstract Nowhere is the conflict between economic progress and environmental quality more apparent than in the mineral extraction industries. The latter half of the 20th century saw major advances in the reclamation technologies. However, mine water pollution problems have not been addressed. In many cases, polluted mine water long outlives the life of the mining operation. As the true cost of long-term water treatment responsibilities has become apparent, interest has grown in the technologies that would decrease the production of contaminated water and make its treatment less costly. This is the first book to address the mine water issue head-on. The authors explain the complexities of mine water pollution by reviewing the hydrogeological context of its formation, and provide an up-to-date presentation of prevention and treatment technologies. The book will be a valuable reference for all professionals who encounter polluted mine water on a regular or occasional basis. Foreword; R. Fernández Rubio. Preface. 1. Mining and the Water Environment. 2. Mine Water Chemistry. 3. Mine Water Hydrology. 4. Active Treatment of Polluted Mine Waters. 5. Passive Treatment of Polluted Mine Waters
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication Dordrecht Editor
Language Summary Language Original Title
Series Editor Series Title Mine Water – Hydrology, Pollution, Remediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1-4020-0137-1 Medium
Area Expedition Conference
Notes Mine Water – Hydrology, Pollution, Remediation; 1; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17449 Serial 195
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S.
Title Type Book Whole
Year (up) 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acidification active treatment aquifer vulnerability aquifers bioremediation chemical composition critical load decision-making discharge engineering properties geomembranes ground water impact statements karst hydrology microorganisms mine dewatering mines natural attenuation pollution regulations remediation risk assessment sedimentation sludge solute transport surface water tailings tailings ponds waste management water management water pollution water quality weathering wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Academic Publishers Place of Publication Dordrecht Editor Alloway, B.J.; Trevors, J.T.
Language Summary Language Original Title
Series Editor Series Title Mine water; hydrology, pollution, remediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 140200138x; 1202001371 Medium
Area Expedition Conference
Notes Mine water; hydrology, pollution, remediation; 2003-030514; GeoRef; English; Includes appendix References: 516; illus. Approved no
Call Number CBU @ c.wolke @ 16504 Serial 196
Permanent link to this record
 

 
Author Wolkersdorfer, C.; Younger, P.L.
Title Passive mine water treatment as an alternative to active systems Type Journal Article
Year (up) 2002 Publication Grundwasser Abbreviated Journal
Volume 7 Issue 2 Pages 67-77
Keywords Groundwater quality geographical abstracts: physical geography hydrology (71 6 11) water treatment groundwater pollution water quality mine
Abstract For the treatment of contaminated mine waters reliable treatment methods with low investment and operational costs are essential. Therefore, passive treatment systems recently have been installed in Great Britain and in Germany (e.g. anoxic limestone drains, constructed wetlands, reactive barriers, roughing filters) and during the last eight years such systems successfully treated mine waters, using up to 6 ha of space. In some cases with highly contaminated mine water, a combination of active and passive systems should be applied, as in any case the water quality has to reach the limits. Because not all the processes of passive treatment systems are understood in detail, current research projects (e.g. EU-project PIRAMID) were established to clarify open questions.
Address Dr. Ch. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Str. 12, Freiberg/Saichen 09596, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1430-483x ISBN Medium
Area Expedition Conference
Notes Passive mine water treatment as an alternative to active systems; 2428851; Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Germany 51; Geobase Approved no
Call Number CBU @ c.wolke @ 17530 Serial 202
Permanent link to this record