Records |
Author |
Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W. |
Title |
Treatment of dissolved metals using permeable reactive barriers |
Type |
Journal Article |
Year |
1998 |
Publication |
Groundwater Quality: Remediation and Protection |
Abbreviated Journal |
|
Volume |
|
Issue |
250 |
Pages |
483-490 |
Keywords |
adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment |
Abstract |
Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1). |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0144-7815 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 8601 |
Serial |
178 |
Permanent link to this record |
|
|
|
Author |
Herbert, R.B., Jr.; Benner, S.G.; Blowes, D.W. |
Title |
Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation |
Type |
Book Chapter |
Year |
1998 |
Publication |
Groundwater Quality: Remediation and Protection |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
451-457 |
Keywords |
acid mine drainage Canada chemical analysis contaminant plumes Eastern Canada ground water hydraulic conductivity hydrolysis Nickel Rim Mine Ontario pH pollution porosity pyrrhotite remediation sample preparation Sudbury Basin sulfides sulfur tailings water pollution 22, Environmental geology |
Abstract |
A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
IAHS-AISH Publication, vol.250 |
Place of Publication |
|
Editor |
Herbert, M.; Kovar, K. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
1901502554 |
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation; GeoRef; English; 1999-065115; GQ 98 conference, Tubingen, Federal Republic of Germany, Sept. 21-24, 1998 References: 15; illus. |
Approved |
no |
Call Number |
CBU @ c.wolke @ 16621 |
Serial |
65 |
Permanent link to this record |
|
|
|
Author |
Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W. |
Title |
Evaluation of in situ layers for treatment of acid mine drainage: A field comparison |
Type |
Journal Article |
Year |
2006 |
Publication |
Water Res |
Abbreviated Journal |
|
Volume |
40 |
Issue |
9 |
Pages |
1816-1826 |
Keywords |
mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment |
Abstract |
Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0043-1354 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct |
Approved |
no |
Call Number |
CBU @ c.wolke @ 10040 |
Serial |
49 |
Permanent link to this record |
|
|
|
Author |
Smyth, D.J.A.; Blowes, D.W.; Benner, S.G.; Hulshof, A.M.; Nelson, J.D. |
Title |
In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials |
Type |
Book Chapter |
Year |
2001 |
Publication |
Proceedings of the Eighth international conference on Tailings and mine waste '01 |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
313-322 |
Keywords |
acid mine drainage; environmental management; ground water; in situ; permeability; pollution; reclamation; sulfate ion; water treatment 22, Environmental geology |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
9058091821 |
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials; GeoRef; English; 2003-003552; Tailings and mine waste '01, Fort Collins, CO, United States, Jan. 16-19, 2001 References: 19; illus. |
Approved |
no |
Call Number |
CBU @ c.wolke @ 5770 |
Serial |
236 |
Permanent link to this record |