Records |
Author |
Johnson, D.B.; Hallberg, K.B. |
Title |
Acid mine drainage remediation options: a review |
Type |
Journal Article |
Year |
2005 |
Publication |
Science of the Total Environment |
Abbreviated Journal |
|
Volume |
338 |
Issue |
1-2 |
Pages |
3-14 |
Keywords |
Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane |
Abstract |
Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0048-9697 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17464 |
Serial |
47 |
Permanent link to this record |
|
|
|
Author |
Johnson, D.B.; Hallberg, K.B. |
Title |
Pitfalls of passive mine water treatment |
Type |
Journal Article |
Year |
2002 |
Publication |
Reviews in Environmental Science & Biotechnology |
Abbreviated Journal |
|
Volume |
1 |
Issue |
5 |
Pages |
335-343 |
Keywords |
acid mine drainage acidophilic microorganisms heavy metals iron oxidation iron reduction remediation sulfate reduction wetlands Wheal Jane |
Abstract |
Passive (wetland) treatment of waters draining abandoned and derelict mine sites has a number of detrac-tions. Detailed knowledge of many of the fundamental processes that dictate the performance and longevity of constructed systems is currently very limited and therefore more research effort is needed before passive treatment becomes an “off-the-shelf” technology. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1569-1705 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Dec.; Pitfalls of passive mine water treatment; 2; FG als Datei vorhanden 4 Abb., 1 Tab.; VORHANDEN | AMD ISI | Wolkersdorfer |
Approved |
no |
Call Number |
CBU @ c.wolke @ 10138 |
Serial |
336 |
Permanent link to this record |