|   | 
Details
   web
Records
Author (up) Chen, M.; Li, L.; Grace, J.; Tazaki, K.; Shiraki, K.; Asada, R.; Watanabe, H.
Title Remediation of acid rock drainage by regenerable natural clinoptilolite Type Journal Article
Year 2007 Publication Water, Air, Soil Pollut. Abbreviated Journal
Volume 180 Issue 1-4 Pages 11-27
Keywords mine water treatment
Abstract Clinoptilolite is investigated as a possible regenerable sorbent for acid rock drainage based on its adsorption capacity for Zn, adsorption kinetics, effect of pH, and regeneration performance. Adsorption of Zn ions depends on the initial concentration and pH. Adsorption/Desorption of Zn reached 75% of capacity after 1-2 h. Desorption depended on pH, with an optimum range of 2.5 to 4.0. The rank of desorption effectiveness was EDTAEDTA > NaCl > NaNO3 > NaOAc > NaHCO3 > Na2CO3 > NaOH > CeCa(OH)(2). For cyclic absorption/desorption, adsorption remained satisfactory for six to nine regenerations with EDTA and NaCl, respectively. The crystallinity and morphology of clinoptilolite remained intact following 10 regeneration cycles. Clinoptilolite appears to be promising for ARD leachate treatment, with significant potential advantages relative to current treatment systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-6979 ISBN Medium
Area Expedition Conference
Notes Mar; Remediation of acid rock drainage by regenerable natural clinoptilolite; Wos:000244030000003; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7319 Serial 17
Permanent link to this record
 

 
Author (up) Li, L.; Jiang, Y.; Guo, Y.
Title Research on a comprehensive industrialization technology for the treatment of mining water containing sulfate ions Type Journal Article
Year 1999 Publication Meitian Dizhi Yu Kantan = Coal Geology & Exploration Abbreviated Journal
Volume 27 Issue 6 Pages 51-53
Keywords acid mine drainage; coal mines; mines; pollution; purification; sulfate ion; technology; water pollution; water treatment 22, Environmental geology
Abstract A method using a barium reagent was developed for the purification of the higher-sulphate mine water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1001-1986 ISBN Medium
Area Expedition Conference
Notes Research on a comprehensive industrialization technology for the treatment of mining water containing sulfate ions; 2005-057894; References: 5 China (CHN); GeoRef; Chinese Approved no
Call Number CBU @ c.wolke @ 6097 Serial 316
Permanent link to this record