|   | 
Details
   web
Record
Author (up) Tsukamoto, T.K.; Miller, G.C.
Title Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage Type Journal Article
Year 1999 Publication Water Res. Abbreviated Journal
Volume 33 Issue 6 Pages 1365-1370
Keywords mine water treatment mining activity sulfate-reducing bacteria microbial activity acid mine drainage methanol passive treatment systems sulfate-reducing bacterium sp-nov
Abstract Sulfate reducing passive bioreactors are increasingly being used to remove metals and raise the pH of acidic waste streams from abandoned mines. These systems commonly use a variety of organic substrates (i.e. manure, wood chips) for sulfate reduction. The effectiveness of these systems decreases as easily accessible reducing equivalents are consumed in the substrate through microbial activity. Using column studies at room temperature (23-26 degrees C), we investigated the addition of lactate and methanol to a depleted manure substrate as a method to reactivate a bioreactor that had lost >95% of sulfate reduction activity. A preliminary experiment compared sulfate removal in gravity fed, flow through bioreactors in which similar masses of each substrate were added to the influent solution. Addition of 148 mg/l lactate resulted in a 69% reduction in sulfate concentration from 300 to 92 mg/l, while addition of 144 mg/l methanol resulted in an 88% reduction in sulfate concentration from 300 to 36 mg/l. Because methanol was found to be an effective sulfate reducing substrate, it was chosen for further experiments due to its inherent physical properties (cost, low freezing point and low viscosity liquid) that make it a superior substrate for remote, high elevation sites where freezing temperatures would hamper the use of aqueous solutions. In these column studies, water containing sulfate and ferrous iron was gravity-fed through the bioreactor columns, along with predetermined methanol concentrations containing reducing equivalents to remove 54% of the sulfate. Following an acclimation period for the columns, sulfate concentrations were reduced from of 900 mg/l in the influent to 454 mg/l in the effluent, that reflects a 93% efficiency of electrons from the donor to the terminal electron acceptor. Iron concentrations were reduced from 100 to 2 mg/l and the pH increased nearly 2 units. (C) 1999 Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes Apr; Methanol as a Carbon Source for Microbiological Treatment of Acid Mine Drainage; Isi:000079485400004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10197.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 10197 Serial 50
Permanent link to this record