|   | 
Details
   web
Records
Author Rees, B.; Bowell, R.; Dey, M.; Williams, K.
Title Passive treatment; a walk away solution? Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 7-8
Keywords acid mine drainage; acidification; alkalinity; bacteria; bioremediation; buffers; chemical reactions; cost; effluents; ferric iron; ferrous iron; filtration; ground water; hydrolysis; iron; metals; monitoring; oxidation; permeability; pH; pollution; remediation; substrates; sulfate ion; suspended materials; water management; water pollution; water quality; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Passive treatment; a walk away solution?; 2001-050826; References: 3; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5722 Serial 265
Permanent link to this record
 

 
Author Skousen, J.
Title Overview of passive systems for treating acid mine drainage Type Journal Article
Year 1997 Publication Green Lands Abbreviated Journal
Volume 27 Issue 4 Pages 34-43
Keywords acid mine drainage; anoxic limestone drains; bioremediation; constructed wetlands; diversion wells; limestone ponds; mitigation; open limestone channels; passive systems; pollution; remediation; successive alkalinity producing systems; technology; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0271-0110 ISBN Medium
Area Expedition Conference
Notes Overview of passive systems for treating acid mine drainage; 2000-019214; References: 59; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6309 Serial 247
Permanent link to this record
 

 
Author Stewart, B.R.
Title The influence of fly ash additions on acid mine drainage production from coarse coal refuse Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidic composition; alkalic composition; alkalinity; ash; coal; controls; copper; diffusion; dissolved materials; experimental studies; geologic hazards; hydraulic conductivity; iron; leachate; leaching; manganese; metals; organic residues; oxidation; oxygen; pH; pollutants; pollution; sedimentary rocks; soil treatment; soils; sorption; sulfate ion; waste disposal; water quality 22, Environmental geology
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The influence of fly ash additions on acid mine drainage production from coarse coal refuse; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6351 Serial 230
Permanent link to this record
 

 
Author Taylor, J.; Waters, J.
Title Treating ARD; how, when, where and why Type Journal Article
Year 2003 Publication Mining Environmental Management Abbreviated Journal
Volume 11 Issue 3 Pages 6-9
Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5528 Serial 225
Permanent link to this record
 

 
Author Watzlaf, G.R.; Schroeder, K.T.; Kairies, C.L.
Title Type Book Whole
Year 2000 Publication Abbreviated Journal
Volume Issue Pages 262-274
Keywords passive treatment anoxic limestone drains wetlands sulfate reduction successive alkalinity-producing systems acid mine drainage ALD SAPS RAPS
Abstract Ten passive treatment systems, located in Pennsylvania and Maryland, have been intensively monitored for up to ten years. Influent and effluent water quality data from ten anoxic limestone drains (ALDs) and six reducing and alkalinity-producing systems (RAPS) have been analyzed to determine long-term performance for each of these specific unit operations. ALDs and RAPS are used principally to generate alkalinity, ALDs are buried beds of limestone that add alkalinity through dissolution of calcite. RAPS add alkalinity through both limestone dissolution and bacterial sulfate reduction. ALDs that received mine water containing less than 1 mg/L of both ferric iron and aluminum have continued to produce consistent concentrations of alkalinity since their construction. However, an ALD that received 20 mg/L of aluminum experienced a rapid reduction in permeability and failed within five months. Maximum levels of alkalinity (between 150 and 300 m&) appear to be reached after I5 hours of retention. All but one RAPS in this study have been constructed and put into operation only within the past 2.5 to 5 years. One system has been in operation and monitored for more than nine years. AIkalinity due to sulfate reduction was highest during the first two summers of operation. Alkalinity due to a limestone dissolution has been consistent throughout the life of the system. For the six RAPS in this study, sulfate reduction contributed an average of 28% of the total alkalinity. Rate of total alkalinity generation range from 15.6 gd''rn-'to 62.4 gd-'mL2 and were dependent on influent water quality and contact time.
Address
Corporate Author Thesis
Publisher Place of Publication Tampa Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 17th Annual National Meeting – American Society for Surface Mining and Reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Long-Term Perpormance of Alkalinity-Producing Passive Systems for the Treatment of Mine Drainage; 2; VORHANDEN | AMD ISI | Wolkersdorfer; als Datei vorhanden 4 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 17440 Serial 216
Permanent link to this record