Records |
Author |
Schoeman, J.J.; Steyn, A. |
Title |
Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa |
Type |
Journal Article |
Year |
2001 |
Publication |
Desalination |
Abbreviated Journal |
|
Volume |
133 |
Issue |
1 |
Pages |
13-30 |
Keywords |
underground mine water treatment technologies reverse osmosis electrodialysis reversal ion-exchange water quality brine disposal treatment costs |
Abstract |
Grootvlei Proprietary Mines Ltd is discharging between 80 and 100 Ml/d underground water into the Blesbokspruit. This water is pumped out of the mine to keep the underground water at such a level as to make mining possible. The water is of poor quality because it contains high TDS levels (2700-3800 mg/l) including high concentrations of iron, manganese, sulphate, calcium, magnesium, sodium and chloride. This water will adversely affect the water ecology in the Blesbokspruit, and it will significantly increase the TDS concentration of one of the major water resources if not treated prior to disposal into the stream. Therefore, alternative water desalination technologies were evaluated to estimate performance and the economics of the processes for treatment of the mine water. It was predicted that water of potable quality should be produced from the mine water with spiral reverse osmosis (SRO). It was demonstrated that it should be possible to reduce the TDS of the mine water (2000-2700-3400-4500 mg/l) to potable standards with SRO (85% water recovery). The capital costs (pretreatment and desalination) for a 80 Ml/d plant (worst-case water) were estimated at US$35M. Total operating costs were estimated at 88.1c/kl. Brine disposal costs were estimated at US$18M. Therefore, the total capital costs are estimated at US$53M. It was predicted that it should be possible to produce potable water from the worst-case feed water (80 Ml/d) with the EDR process. It was demonstrated that the TDS in the feed could be reduced from 4178 to 246 mg/l in the EDR product (65% water recovery). The capital costs (pretreatment plus desalination) to desalinate the worst-case feed water to potable quality with EDR is estimated at US$53.3M. The operational costs are estimated at 47.6 c/kl. Brine disposal costs were estimated at US$42M. Therefore, the total capital costs are estimated at US$95.3 M. It was predicted that it should be possible to produce potable water from the mine water with the GYP-CIX ion- exchange process. It was demonstrated that the feed TDS (2000- 4500 mg/l) could be reduced to less than 240 mg/l (54% water recovery for the worst-case water). The capital cost for an 80 Ml/d ion-exchange plant (worst-case water) was estimated at US$26.7M (no pretreatment). Operational costs were estimated at 60.4 c/kl. Brine disposal costs were estimated at US$55.1M. Therefore, the total desalination costs were estimated at US$81.8M. The capital outlay for a SRO plant will be significantly less than that for either an EDR or a GYP-CIX plant. The operating costs, however, of the RO plant are significantly higher than for the other two processes. Potable water sales, however, will bring more in for the RO process than for the other two processes because a higher water recovery can be obtained with RO. The operating costs minus the savings in water sales were estimated at 17.2; 6.7 and US$8.6M/y for the RO, EDR and GYP-CIX processes, respectively (worst case). Therefore, the operational costs of the EDR and GYP-CIX processes are the lowest if the sale of water is taken into consideration. This may favour the EDR and GYP-CIX processes for the desalination of the mine water. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0011-9164 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Feb. 10; Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd into the Blesbokspruit in South Africa; Isi:000167087500002; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10184.pdf; AMD ISI | Wolkersdorfer |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17480 |
Serial |
23 |
Permanent link to this record |
|
|
|
Author |
Banks, S.B.; Banks, D. |
Title |
Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK |
Type |
Book Chapter |
Year |
2001 |
Publication |
Geoenvironmental engineering Engineering Geology |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
31-37 |
Keywords |
abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology |
Abstract |
The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
60 |
Editor |
Yong, R.N.; Thomas, H.R. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables |
Approved |
no |
Call Number |
CBU @ c.wolke @ 16515 |
Serial |
31 |
Permanent link to this record |
|
|
|
Author |
Baker, K.A.; Fennessy, M.S.; Mitsch, W.J. |
Title |
Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach |
Type |
Journal Article |
Year |
1991 |
Publication |
Ecological Economics |
Abbreviated Journal |
|
Volume |
3 |
Issue |
1 |
Pages |
1-24 |
Keywords |
mine drainage economic cost iron removal simulation model ecotechnology modelling approach treatment efficiency wetland design wastewater treatment USA Alabama USA Tennessee USA Ohio |
Abstract |
A simulation model is developed of the efficiency and economics of an application of ecotechnology – using a created wetland to receive and treat coal mine drainage. The model examines the role of loading rates of iron on treatment efficiencies and the economic costs of wetland versus conventional treatment of mine drainage. It is calibrated with data from an Ohio wetland site and verified from multi-site data from Tennessee and Alabama. The model predicts that iron removal is closely tied to loading rates and that the cost of wetland treatment is less than that of conventional for iron loading rates of approximately 20-25 g Fe m “SUP -2” day “SUP -1” and removal efficiencies less than 85%. A wetland to achieve these conditions would cost approximately US$50 000 per year according to the model. When higher loading rates exist and higher efficiencies are needed, wetland systems are more costly than conventional treatment. -Authors |
Address |
Third author School of Natural Resources & Environmental Biology Program, Ohio State Univ., Columbus, OH 43210-1085, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0921-8009 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Mar.; Designing wetlands for controlling coal mine drainage: an ecologic- economic modelling approach; (0882174); 91h-08506; Using Smart Source Parsing pp; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10684.pdf; Geobase |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17570 |
Serial |
38 |
Permanent link to this record |
|
|
|
Author |
Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D. |
Title |
Utilization of a ceramic membrane for acid mine drainage treatment |
Type |
Journal Article |
Year |
1997 |
Publication |
Tailings and Mine Waste '97 |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
453-460 |
Keywords |
acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment |
Abstract |
BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
90-5410-857-6 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 8744 |
Serial |
135 |
Permanent link to this record |
|
|
|
Author |
Smit, J.P. |
Title |
Potable water from sulphate polluted mine sources |
Type |
Journal Article |
Year |
2000 |
Publication |
Mining Environmental Management |
Abbreviated Journal |
|
Volume |
8 |
Issue |
6 |
Pages |
7-9 |
Keywords |
acid mine drainage; Africa; cost; drinking water; economics; pollutants; pollution; potability; remediation; South Africa; Southern Africa; sulfates; water quality; water resources 21 Hydrogeology; 22 Environmental geology |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0969-4218 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Potable water from sulphate polluted mine sources; 2001-038331; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English |
Approved |
no |
Call Number |
CBU @ c.wolke @ 5799 |
Serial |
239 |
Permanent link to this record |