toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W. url  openurl
  Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
  Year 2000 Publication J Contam Hydrol Abbreviated Journal  
  Volume (down) 45 Issue 1-2 Pages 123-137  
  Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides  
  Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 9401 Serial 46  
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. url  openurl
  Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
  Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal  
  Volume (down) 39 Issue 12 Pages 4606-4613  
  Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group  
  Abstract  
  Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5382 Serial 71  
Permanent link to this record
 

 
Author Matlock, M.M.; Howerton, B.S.; Atwood, D.A. url  openurl
  Title Chemical precipitation of heavy metals from acid mine drainage Type Journal Article
  Year 2002 Publication Water Res Abbreviated Journal  
  Volume (down) 36 Issue 19 Pages 4757-4764  
  Keywords mine water treatment BDET Acid mine drainage Water treatment Remediation Heavy metals Chemical precipitation Mercury Iron  
  Abstract The 1,3-benzenediamidoethanethiol dianion (BDET, known commercially as MetX) has been developed to selectively and irreversibly bind soft heavy metals from aqueous solution. In the present study BDET was found to remove >90% of several toxic or problematic metals from AMD samples taken from an abandoned mine in Pikeville, Kentucky. The concentrations of metals such as iron, may be reduced at pH 4.5 from 194 ppm to below 0.009 ppm. The formation of stoichiomietric BDET-metal precipitates in this process was confirmed using X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and infrared spectroscopy (IR).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Nov.; Chemical precipitation of heavy metals from acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/15005.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 15005 Serial 48  
Permanent link to this record
 

 
Author Sottnik, P.; Sucha, V. openurl 
  Title Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica Type Journal Article
  Year 2001 Publication Mineralia Slovaca Abbreviated Journal  
  Volume (down) 33 Issue 1 Pages 53-60  
  Keywords acid mine drainage aluminum Banska Stiavnica Slovakia Central Europe copper Eh Europe gangue heavy metals iron manganese metals metamorphic rocks oxidation pH pollution precipitation pyrite quartzites reduction remediation Slovakia Sobov Mine sulfides vegetation waste disposal wetlands 22, Environmental geology  
  Abstract A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0369-2086 ISBN Medium  
  Area Expedition Conference  
  Notes Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica; 2004-084366; References: 21; illus. incl. sects. Slovak Republic (SVK); GeoRef; Slovakian Approved no  
  Call Number CBU @ c.wolke @ 16534 Serial 235  
Permanent link to this record
 

 
Author Gong, Z.; Huang, J.; Jiang, H. openurl 
  Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
  Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal  
  Volume (down) 27 Issue 4 Pages 432-435  
  Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology  
  Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1005-9792 ISBN Medium  
  Area Expedition Conference  
  Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no  
  Call Number CBU @ c.wolke @ 16650 Serial 370  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: