|   | 
Details
   web
Records
Author Anonymous
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 118 pp
Keywords abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Society for Mining, Metallurgy, and Exploration Place of Publication Littleton Editor
Language Summary Language Original Title
Series Editor Series Title Remediation of historical mine sites; technical summaries and bibliography Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 0873351622 Medium
Area Expedition Conference
Notes Remediation of historical mine sites; technical summaries and bibliography; 1998-031431; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6164 Serial 11
Permanent link to this record
 

 
Author Younger, P.L.; Banwart, S.A.; Hedin, R.S.
Title Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acidification active treatment aquifer vulnerability aquifers bioremediation chemical composition critical load decision-making discharge engineering properties geomembranes ground water impact statements karst hydrology microorganisms mine dewatering mines natural attenuation pollution regulations remediation risk assessment sedimentation sludge solute transport surface water tailings tailings ponds waste management water management water pollution water quality weathering wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Academic Publishers Place of Publication Dordrecht Editor Alloway, B.J.; Trevors, J.T.
Language Summary Language Original Title
Series Editor Series Title Mine water; hydrology, pollution, remediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 140200138x; 1202001371 Medium
Area Expedition Conference
Notes Mine water; hydrology, pollution, remediation; 2003-030514; GeoRef; English; Includes appendix References: 516; illus. Approved no
Call Number CBU @ c.wolke @ 16504 Serial 196
Permanent link to this record
 

 
Author Faulkner, B.B.; Skousen, J.G.; Skousen, J.G.; Ziemkiewicz, P.F.
Title Treatment of acid mine drainage by passive treatment systems Type Book Chapter
Year 1996 Publication Acid mine drainage control and treatment Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; acidification; alkalinity; carbonate rocks; chemical reactions; constructed wetlands; controls; depositional environment; ground water; heavy metals; limestone; microorganisms; pollution; sedimentary rocks; substrates; surface water; techniques; United States; water pollution; water treatment; West Virginia; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher West Virginia University and the National Mine Land Reclamation Center Place of Publication Morgantown Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by passive treatment systems; GeoRef; English; 2004-051153; Edition: 2 References: 13; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6363 Serial 384
Permanent link to this record
 

 
Author Arango, I.
Title Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage atmospheric precipitation benthic taxa bioremediation dissolved materials dissolved oxygen electron microscopy data Euglena mutabilis Green Valley Mine ICP mass spectra Indiana iron mass spectra metals microorganisms mines oxygen pH photochemistry photosynthesis pollution rain remediation sediments soils spectra temperature United States Vigo County Indiana water 22, Environmental geology
Abstract Euglena mutabilis is an acidophilic, photosynthetic protozoan that forms benthic mats in acid mine drainage (AMD) channels. At the Green Valley mine, western Indiana, E. mutabilis resides in AMD measuring <4.2 pH, with high concentrations of dissolved constituents (up to 22.67 g/l). One of the main factors influencing E. mutabilis distribution is water temperature. The microbe forms thick (>1 mm), extensive mats during spring and fall, when water temperature is between 13 and 28 degrees C. During winter and summer, when temperatures are outside this range, benthic communities have a very patchy distribution and are restricted to areas protected from extreme temperature changes. E. mutabilis also responds to rapid increases in pH, which are associated with rainfall events. During these events pH can increase above 4.0, causing precipitation of Fe and Al oxy-hydroxides that cover the mats. The microbe responds by moving through the precipitates, due to phototaxis, and reestablishing the community at the sediment-water interface within 12 hours. The biological activities of E. mutabilis may have a beneficial effect on AMD systems by removing iron from effluent via oxygenic photosynthesis, and/or by internal sequestration. Photosynthesis by E. mutabilis contributes elevated concentrations of dissolved oxygen (DO), up to 17.25 mg/l in the field and up to 11.83 mg/l in the laboratory, driving oxidation and precipitation of reduced metal species, especially Fe (II), which are dissolved in the effluent. In addition, preliminary electro-microscopic and staining analyses of the reddish intracellular granules in E. mutabilis indicate that the granules contain iron, suggesting that E. mutabilis sequesters iron from AMD. Inductive coupled plasma analysis of iron concentration in AMD with and without E. mutabilis also shows that E. mutabilis accelerates the rate of Fe removal from the media. Whether iron removal is accelerated by internal sequestration of iron and/or by precipitation via oxygenic photosynthesis has yet to be determined. These biological activities may play an important role in the natural remediation of AMD systems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Indiana State University, Place of Publication Terre Haute Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems; GeoRef; English; References: 39; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16491 Serial 476
Permanent link to this record
 

 
Author Nakazawa, H.
Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal
Volume Issue Pages 373-381
Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production
Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0-87339-642-1 ISBN Medium
Area Expedition Conference
Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17456 Serial 151
Permanent link to this record