|   | 
Details
   web
Records
Author (up) Groudev, S.N.; Georgiev, P.S.; Spasova, I.I.; Nicolova, M.N.
Title In situ treatment of mine waters by means of a permeable barrier Type Journal Article
Year 2000 Publication Groundwater 2000 Abbreviated Journal
Volume Issue Pages 417-418
Keywords mine water treatment
Abstract Acid ground waters contaminated with radioactive elements (U, Ra, Th), toxic heavy metals (Cu, Zn, Cd, Mn, Fe), arsenic and sulphates were treated by means of a permeable barrier. The barrier was filled with a mixture of biodegradable solid organic substrates (spent mushroom compost, sawdust and cow manure) and was inhabited by a mixed microbial community consisting of sulphate-reducing bacteria and other metabolically interdependent microorganisms. An efficient removal of the pollutants was achieved by this barrier during the different climatic seasons, even at ambient temperatures close to degrees C. The microbial dissimilatory sulphate reduction and the sorption of pollutants by the organic matter in the barrier were the main processes involved in this removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of mine waters by means of a permeable barrier; Isip:000088384300185; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8407 Serial 173
Permanent link to this record
 

 
Author (up) Guay, R.
Title Effect of flooding of oxidized mine tailings on T-ferrooxidans and T-thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up Type Journal Article
Year 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal
Volume 9 Issue Pages 635-643
Keywords mine water treatment
Abstract A pilot-scale study on the effect of flooding unoxidized and oxidized Cu/Zn tailings demonstrated the technical feasability of this technology to remediate a mining site where over 3 million tons of tailings were impounded. Full-scale flooding of the tailing pond with free running water was undertaken after the construction of an impervious dam; approximately 2 million m(3) of surface water at pH 7,4 completely covered the tailings after 16 months. The minimal water column over the tailings was established at 1,20 m and reached 4,5 m, depending on the site topography. Water and tailings samples were collected from 9 different locations from the surface of the man-made lake using a specially designed borer and were analyzed for pH, conductivity, iron- and sulfur-oxidizing bacteria activity and numbers as well as the sulfate reducing bacteria (SRB) population. We showed that over a four year period of flooding, the overall population of iron-oxidizers decreased considerably; their numbers drastically fell from 1 x 10(6) to 1 x 10(2) active cells per g of oxidized tailings while the SRBs increased from 10(1) to 10(5)/g. The pH of the influent, the reservoir and the effluent water remained fairly constant between 6,9 up to 7,4 over the entire period. During this time, interstitial water pH increased from 2,9 to 4,3 in flooded tailings where lime could not be incorporated in the first 20 cm of tailings; elsewhere, the pH of the tailings suspensions remained fairly constant around neutral values (pH 7,0). Dissolved oxygen was measured at fixed intervals and remained also constant between 6 and 7.5 mg/L while water temperatures fluctuated below freezing point to +20C respectively in winter and summer season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Effect of flooding of oxidized mine tailings on T-ferrooxidans and T-thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up; Isip:000086245100066; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17121 Serial 175
Permanent link to this record
 

 
Author (up) Gusek, J.J.
Title Design challenges for large scale sulfate reducing bioreactors Type Journal Article
Year 2005 Publication Contaminated Soils, Sediments and Water: Science in the Real World, Vol 9 Abbreviated Journal
Volume 9 Issue Pages 33-44
Keywords mine water treatment
Abstract The first large-scale (1,200 gpm capacity), sulfate-reducing; bioreactor (SRBR) was constructed in 1996 to treat water from an underground lead mine in Missouri. Other large-scale SRBR systems have been built elsewhere since then. This technology holds much promise for economically treating heavy metals and has progressed steadily from the laboratory to industrial applications. Scale-up challenges include: designing for seasonal temperature variations, minimizing short circuits, changes in metal loading rate s, storm water impacts, and resistance to vandalism. However, the biggest challenge may be designing for the progressive biological degradation of the organic substrate and its effects on the hydraulics of the SRBR cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Design challenges for large scale sulfate reducing bioreactors; Isip:000225303300004; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16959 Serial 156
Permanent link to this record
 

 
Author (up) Harrington, J.M.
Title In situ treatment of metals in mine workings and materials Type Journal Article
Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal
Volume Issue Pages 251-261
Keywords mine water treatment
Abstract Contact of oxygen contained in air and water with mining materials can increase the solubility of metals. In heaps leached by cyanide, metals can also be made soluble through complexation with cyanide. During closure, water in heaps, and water collected in mine workings and pit lakes may require treatment to remove these metals. In situ microbiological treatment to create reductive conditions and to precipitate metals as sulfides or elemental metal has been applied at several sites with good success. Treatment by adding organic carbon to stimulate in situ microbial reduction has been successful in removing arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, tin, uranium, and zinc to a solid phase. Closure practices can affect the success of in situ treatment at mining sites, and affect the stability of treated materials. This paper defines factors that determine the cost and permanence of in situ treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of metals in mine workings and materials; Isip:000175560600034; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17037 Serial 161
Permanent link to this record
 

 
Author (up) Hause, D.R.; Willison, L.R.
Title Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage Type Journal Article
Year 1986 Publication Abbreviated Journal
Volume Issue Pages
Keywords in situ treatment sealing phosphate rock dust mine water acid mine water treatment beach area
Abstract Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 7th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2; als Datei vorhanden 13 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17350 Serial 359
Permanent link to this record