Records |
Author |
Jarvis, A.P. |
Title |
Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK |
Type |
Journal Article |
Year |
2006 |
Publication |
Environmental Pollution |
Abbreviated Journal |
|
Volume |
143 |
Issue |
2 |
Pages |
261-268 |
Keywords |
mine water treatment |
Abstract |
A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 16928 |
Serial |
109 |
Permanent link to this record |
|
|
|
Author |
Jarvis, A.P.; Younger, P.L. |
Title |
Passive treatment of ferruginous mine waters using high surface area media |
Type |
Journal Article |
Year |
2001 |
Publication |
Water Res. |
Abbreviated Journal |
|
Volume |
35 |
Issue |
15 |
Pages |
3643-3648 |
Keywords |
mine water treatment passive treatment mine water accretion oxidation iron manganese water treatment |
Abstract |
Rapid oxidation and accretion of iron onto high surface area media has been investigated as a potential passive treatment option for ferruginous, net-alkaline minewaters. Two pilot-scale reactors were installed at a site in County Durham, UK. Each 2.0m high cylinder contained different high surface area plastic trickling filter media. Ferruginous minewater was fed downwards over the media at various flow-rates with the objective of establishing the efficiency of iron removal at different loading rates. Residence time of water within the reactors was between 70 and 360s depending on the flow-rate (1 and 12l/min, respectively). Average influent total iron concentration for the duration of these experiments was 1.43mg/l (range 1.08-1.84mg/l; n=16), whilst effluent iron concentrations averaged 0.41mg/l (range 0.20-1.04mg/l; n=15) for Reactor A and 0.38mg/l (range 0.11-0.93mg/l; n=16) for Reactor B. There is a strong correlation between influent iron load and iron removal rate. Even at the highest loading rates (approximately 31.6g/day) 43% and 49% of the total iron load was removed in Reactors A and B, respectively. At low manganese loading rates (approximately 0.50-0.90g/day) over 50% of the manganese was removed in Reactor B. Iron removal rate (g/m3/d) increases linearly with loading rate (g/day) up to 14g/d and the slope of the line indicates that a mean of 85% of the iron is removed. In conclusion, it appears that the oxidation and accretion of ochre on high surface area media may be a promising alternative passive technology to constructed wetlands at certain sites. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0043-1354 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Oct; Passive treatment of ferruginous mine waters using high surface area media; 9; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9698.pdf; AMD ISI | Wolkersdorfer |
Approved |
no |
Call Number |
CBU @ c.wolke @ 9698 |
Serial |
27 |
Permanent link to this record |
|
|
|
Author |
Jeffree, R.A. |
Title |
Rum Jungle mine site remediation: Relationship between changing water quality parameters and ecological recovery in the Finniss River system |
Type |
Journal Article |
Year |
2000 |
Publication |
ICARD 2000, Vols I and II, Proceedings |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
759-764 |
Keywords |
mine water treatment |
Abstract |
The Finniss River system in tropical northern Australia has received 'acid-drainage' contaminants from the Rum Jungle uranium/copper mine site over the past 4 decades. Following mine-site remediation that began in 1981-82 the annual contaminant loads of sulfate, Cu, Zn and Mn have declined by factors of 3, 7, 5 and 4, respectively over 1990-93, compared to the 1969-74 pre-remediation loads. Comparison of the frequency distributions of contaminant water concentrations over these pre- and post-remedial periods have shown varying degrees of reduction in the highest levels following mine-site remediation, that are consistent with reductions in their annual-cycle loads. Among the three selected major metal contaminants the reductions in maximum water concentrations are most pronounced for Cu. The demonstrated reductions in the highest water concentrations of all four contaminants are also associated with previously reported ecological improvement in the Finniss River system, compared to the benchmark of environmental detriment established in 1973/74, prior to the beginning of remediation at the mine site. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Rum Jungle mine site remediation: Relationship between changing water quality parameters and ecological recovery in the Finniss River system; Isip:000169875500073; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17098 |
Serial |
170 |
Permanent link to this record |
|
|
|
Author |
Johnson, D.B.; Hallberg, K.B. |
Title |
Acid mine drainage remediation options: a review |
Type |
Journal Article |
Year |
2005 |
Publication |
Science of the Total Environment |
Abbreviated Journal |
|
Volume |
338 |
Issue |
1-2 |
Pages |
3-14 |
Keywords |
Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane |
Abstract |
Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0048-9697 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17464 |
Serial |
47 |
Permanent link to this record |
|
|
|
Author |
Jones, D.R. |
Title |
Passive treatment of mine water |
Type |
Journal Article |
Year |
1995 |
Publication |
Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3 |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
755-763 |
Keywords |
mine water treatment |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Passive treatment of mine water; Isip:A1995bg39j00077; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17189 |
Serial |
138 |
Permanent link to this record |