Records |
Author |
Bertrand, S. |
Title |
Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation |
Type |
Journal Article |
Year |
1997 |
Publication |
Desalination |
Abbreviated Journal |
|
Volume |
113 |
Issue |
2-3 |
Pages |
277-281 |
Keywords |
mine water treatment |
Abstract |
A highly sulphated, hard water from a flooded iron mine was treated by nanofiltration for the production of drinking water (125 m(3)/h). This paper introduces the context and summarizes the configuration and operating conditions of the plant. The process performance in terms of product water quality and permeability during the first 2 years is presented and discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation; Wos:000071218200023; Times Cited: 5; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17153 |
Serial |
134 |
Permanent link to this record |
|
|
|
Author |
Coulton, R.; Bullen, C.; Hallett, C. |
Title |
The design and optimisation of active mine water treatment plants |
Type |
Journal Article |
Year |
2003 |
Publication |
Land Contam. Reclam. |
Abbreviated Journal |
|
Volume |
11 |
Issue |
2 |
Pages |
273-280 |
Keywords |
sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage |
Abstract |
This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters. |
Address |
R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0967-0513 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17513 |
Serial |
59 |
Permanent link to this record |
|
|
|
Author |
Matsuoka, I. |
Title |
Mine drainage treatment |
Type |
Journal Article |
Year |
1996 |
Publication |
Shigen to Sozai = Journal of the Mining and Materials Processing Institute of Japan |
Abbreviated Journal |
|
Volume |
112 |
Issue |
5 |
Pages |
273-281 |
Keywords |
acid mine drainage; Asia; Far East; Japan; mine dewatering; mine drainage; mines; pollution; water treatment 22, Environmental geology |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0916-1740 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Mine drainage treatment; 1997-062437; References: 66; illus. incl. 9 tables Japan (JPN); GeoRef; Japanese |
Approved |
no |
Call Number |
CBU @ c.wolke @ 6342 |
Serial |
305 |
Permanent link to this record |
|
|
|
Author |
Kleinmann, R.L.P. |
Title |
Acid Mine Water Treatment using Engineered Wetlands |
Type |
Journal Article |
Year |
1990 |
Publication |
Int. J. Mine Water |
Abbreviated Journal |
|
Volume |
9 |
Issue |
1-4 |
Pages |
269-276 |
Keywords |
wetlands AMD passive treatment pollution control water treatment abandoned mines biological treatment pH bacterial oxidation wetland sizing sphagnum |
Abstract |
400 systems installed within 4 years During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (in2) required is equivalent to the iron. load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (in2). |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0255-6960 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Acid Mine Water Treatment using Engineered Wetlands; 1; Fg; AMD ISI | Wolkersdorfer |
Approved |
no |
Call Number |
CBU @ c.wolke @ 17368 |
Serial |
328 |
Permanent link to this record |
|
|
|
Author |
Jarvis, A.P. |
Title |
Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK |
Type |
Journal Article |
Year |
2006 |
Publication |
Environmental Pollution |
Abbreviated Journal |
|
Volume |
143 |
Issue |
2 |
Pages |
261-268 |
Keywords |
mine water treatment |
Abstract |
A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science |
Approved |
no |
Call Number |
CBU @ c.wolke @ 16928 |
Serial |
109 |
Permanent link to this record |