|   | 
Details
   web
Records
Author Boonstra, J.
Title Biological treatment of acid mine drainage Type Journal Article
Year (up) 1999 Publication Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Pt B 1999 Abbreviated Journal
Volume 9 Issue Pages 559-567
Keywords mine water treatment
Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; Isip:000086245100058; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17117 Serial 176
Permanent link to this record
 

 
Author Zaluski, M.
Title Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control Type Journal Article
Year (up) 1999 Publication Phytoremediation and Innovative Strategies for Specialized Remedial Applications Abbreviated Journal
Volume Issue Pages 205-210
Keywords mine water treatment
Abstract At many abandoned mine sites in the Western U.S., conventional treatment of AMD is not feasible due to the of lack of power and limited site accessibility. Therefore, three bioreactors were built at an abandoned mine site in Montana to demonstrate feasibility of treating AMD using sulphate reducing bacteria (SRB) in a passive water treatment train. The SRB are capable of increasing the pH and reducing the load of dissolved metals in the effluent. The reactors, constructed in the Fall of 1998, were designed to evaluate the SRB technology applied under different environmental conditions. Each bioreactor was designed with mechanisms to enable simulation of seasonal dry and wet climatic conditions. Two bioreactors were placed in trenches and one was constructed above the ground to investigate impact of seasonal freezing and thawing on SRB activity. Two bioreactors contain a passive pretreatment section to increase pH of water before the AMD enters the bioreactor chamber.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Design and construction of bioreactors with sulfate-reducing bacteria for acid mine drainage control; Isip:000082416500033; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17136 Serial 177
Permanent link to this record
 

 
Author Waring, C.L.; Taylor, J.R.
Title Type Book Whole
Year (up) 1999 Publication Abbreviated Journal
Volume Issue Pages 663-665
Keywords in-situ mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes A new technique for building in-situ sub-surface hydrologic barriers: NBT; 1; AMD ISI | Wolkersdorfer; 3 Abb., 1 Tab. Approved no
Call Number CBU @ c.wolke @ 9947 Serial 218
Permanent link to this record
 

 
Author Smit, J.P.
Title Type Book Whole
Year (up) 1999 Publication Abbreviated Journal
Volume Issue Pages 467-471
Keywords experimental studies; ground water; laboratory studies; methods; mine drainage; pollutants; pollution; remediation hydrogeology mining water treatment contamination sulphate economy ettringite acid mine drainage plants agriculture laboratory hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Treatment of polluted Mine Water; 1; AMD ISI | Wolkersdorfer; FG 'de' 5 Abb., 5 Tab. Approved no
Call Number CBU @ c.wolke @ 9909 Serial 241
Permanent link to this record
 

 
Author Schwartz, M.O.; Ploethner, D.
Title From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia Type Book Chapter
Year (up) 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords Africa; aluminum; cadmium; canals; carbonates; copper; drinking water; geochemistry; Grootfontein-Omatako Canal; heavy metals; hydrochemistry; iron; lead; manganese; metallogenic provinces; metals; mine drainage; mineral deposits, genesis; mines; Namibia; policy; precipitation; purification; Southern Africa; transport; water management; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Bundesanst. fuer Geowiss. und Rohstoffe Place of Publication Hanover Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia; GeoRef; English; 2002-033925; International congress on Mine, water and environment, Seville, Spain, Sept. 13, 1999 References: 7; 2 tables, sketch maps Approved no
Call Number CBU @ c.wolke @ 5929 Serial 250
Permanent link to this record