|   | 
Details
   web
Records
Author Norton, P.J.
Title The Control of Acid Mine Drainage with Wetlands Type Journal Article
Year (up) 1992 Publication Mine Water Env. Abbreviated Journal
Volume 11 Issue 3 Pages 27-34
Keywords acid mine drainage construction chemistry artificial wetlands pollution control performance evaluation coal mines pollution control and prevention
Abstract The recent increases in environmental legislation, especially in the USA'have meant that there is a need on behalf of the mining companies for more judicious operational planning and more thorough restoration techniques in order to reduce costs and prevent violation of the smctly enforced regulations. Water pollution is probably the greatest problem and many less enlightened operators, especially for example, in surface coal milling in Pennsylvania, have been forced into liquidation after having been unable to meet the severe restrictions on Acid Mine Drainage (AMD). The problems of AMD are also inherent in most forms of metalliferous and coal mining and also in some types of aggregate quarrying. As excavations go deeper in search of ever diminishing reserves then they are more likely to encounter groundwater which can become polluted if insufficient care is not taken. It is to be expected that the laws will also become more severe than they are at present in Europe and methods of treatment of AMD will need to be developed that are more efficient than the costly chemical methods currently used. Research by the author and others into the source of AMD pollution and its treatment with engineered wetlands and other operational methods are discussed in the paper. The methods have- the distinct benefit that they are cheap to install, are cost effective over a long period with the minimum of supervision and are environmentally acceptable to the planning and regulatory authorities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The Control of Acid Mine Drainage with Wetlands; 1; 1 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17401 Serial 284
Permanent link to this record
 

 
Author Janiak, H.
Title Mine drainage treatment in Polish lignite mining Type Journal Article
Year (up) 1992 Publication Mine Water Env. Abbreviated Journal
Volume 11 Issue 1 Pages 35-44
Keywords laboratory scale tests plants bogs biological filters open cut mining mine drainage filtration flocculation radiation particle size suspended solids water treatment water discharge field tests lignite mines poland mining and industrial water water treatment water quality
Abstract The paper presents volumes and characteristics of water discharged from some Polish lignite open pit mines and discusses methods for its treatment. Results of research work concerned with increase in mine drainage efficiency by using processes of radiation, flocculation and filtration through a set of bog plants, iknown as grass filter are also discussed
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Mine drainage treatment in Polish lignite mining; WATERLIT: 00526053 1 Abb., 3 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17356 Serial 342
Permanent link to this record
 

 
Author Younger, P.L.
Title The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom Type Journal Article
Year (up) 2000 Publication Mine Water Env. Abbreviated Journal
Volume 19 Issue 2 Pages 84-97
Keywords wetlands SAPS aerobic wetlands acidity aerobic anaerobic compost iron metals passive reactive barrier water treatment
Abstract During the 1990s, passive treatment technology was introduced to the United Kingdom (UK). Early hesitancy on the part of regulators and practitioners was rapidly overcome, at least for net-alkaline mine waters, so that passive treatment is now the technology of choice for the long-term remediation of such discharges, wherever land availability is not unduly limiting. Six types of passive systems are now being used in the UK for mine water treatment: ¨ aerobic, surface flow wetlands (reed-beds); ¨ anaerobic, compost wetlands with significant surface flow; ¨ mixed compost / limestone systems, with predominantly subsurface flow (so-called Reducing and Alkalinity Producing Systems (RAPS)); ¨ subsurface reactive barriers to treat acidic, metalliferous ground waters; ¨ closed-system limestone dissolution systems for zinc removal from alkaline waters; ¨ roughing filters for treating ferruginous mine waters where land availability is limited. Each of these technologies is appropriate for a different kind of mine water, or for specific hydraulic circumstances. The degree to which each type of system can be considered “proven technology” corresponds to the order in which they are listed above. Many of these passive systems have become foci for detailed scientific research, as part of a $1.5M European Commission project running from 2000 to 2003.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom; 1; FG 5 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17448 Serial 198
Permanent link to this record
 

 
Author Novák, J.
Title Groundwater Remediation in the Stráz Leaching Operation Type Journal Article
Year (up) 2001 Publication Mine Water Env. Abbreviated Journal
Volume 20 Issue 4 Pages 158-167
Keywords Contamination Czech Republic groundwater in situ leaching remediation
Abstract An area of the Czech Republic in the northeastern part of the Ceská Lípa district has been affected by “in situ” chemical mining of uranium. The risks associated with the contaminants have been assessed and a complex groundwater remediation project has been generated. The remediation alternatives for both the Cenomanian and Turonian aquifers are presented, relative to time requirements, economics, ecological considerations and the elimination of unacceptable risks for the population and environment. Finally, the present progress of remediation and a concept of what is necessary to complete remediation are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Groundwater Remediation in the Stráz Leaching Operation; 1; FG 10 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17403 Serial 281
Permanent link to this record
 

 
Author Simmons, J.; Ziemkiewicz, P.; Black, D.C.
Title Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage Type Journal Article
Year (up) 2002 Publication Mine Water Env. Abbreviated Journal
Volume 21 Issue 2 Pages 91-99
Keywords acid mine drainage Beaver Creek check dam leach beds leaching metal sequestration mine water leaching procedure open limestone channel steel slag West Virginia
Abstract Steel slag from the Waylite steel-making plant in Bethlehem, Pennsylvania was leached with acidic mine drainage (AMD) of a known quality using an established laboratory procedure. Leaching continued for 60 cycles and leachates were collected after each cycle. Results indicated that the slag was very effective at neutralizing acidity. The AMD/slag leachates contained higher average concentrations of Ba, V, Mn, Cr, As, Ag, and Se and lower average concentrations of Sb, Fe, Zn, Be, Cd, Tl, Ni, Al, Cu, and Pb than the untreated AMD. Based on these tests, slag leach beds were constructed at the abandoned McCarty mine site in Preston County, West Virginia. The leach beds were constructed as slag check dams below limestone-lined settling basins. Acid water was captured in limestone channels and directed into basins to leach through the slag dams and discharge into a tributary of Beaver Creek. Since installation in October 2000, the system has been consistently producing net alkaline, pH 9 water. The treated water is still net alkaline and has a neutral pH after it encounters several other acidic seeps downstream.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Use of Steel Slag Leach Beds for the Treatment of Acid Mine Drainage; 1; FG 20 Abb., 4 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17421 Serial 249
Permanent link to this record