|   | 
Details
   web
Records
Author (up) Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication Process Metallurgy, vol.9, Part B Abbreviated Journal
Volume Issue Pages 559-567
Keywords acid mine drainage adsorption alkaline earth metals arsenic Bingham Canyon Mine bioremediation Budelco Zinc Refinery cadmium copper Cornwall England England Europe Great Britain heavy metals iron magnesium manganese metals Netherlands pH phase equilibria pollution remediation sulfate ion United Kingdom United States Utah Western Europe Wheal Jane Mine zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Amils, R.; Ballester, A.
Language Summary Language Original Title
Series Editor Series Title Biohydrometallurgy and the environment toward the mining of the 21st century; proceedings of the International biohydrometallurgy symposium IBS'99, Part B, Molecular biology, biosorption, bioremediation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0444501932 Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; GeoRef; English; 2000-049809; International biohydrometallurgy symposium IBS'99, Madrid, Spain, June 20-23, 1999 References: 11; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16595 Serial 442
Permanent link to this record
 

 
Author (up) Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N.; Ballester, R.A. and A.
Title Biological treatment of acid mine drainage Type Book Chapter
Year 1999 Publication Process Metallurgy Abbreviated Journal
Volume Issue Pages 559-567
Keywords
Abstract In this paper experience obtained with THIOPAQ technology treating Acid Mine Drainage is described. THIOPAQ Technology involves biological sulfate reduction technology and the removal of heavy metals as metal sulfide precipitates. The technology was developed by the PAQUES company, who have realised over 350 high rate biological treatment plants world wide. 5 plants specially designed for sulfate reduction are successfully operated on a continuous base (1998 status). At Budelco, a zinc refinery in the Netherlands, an acid groundwater stream is effectively treated since 1992, removing metals and sulfate. At Kennecott Utah Copper (USA) a demo plant is in operation since 1995. An acid groundwater flow is treated to remove sulfate and metals, whereas the excess sulfide is used to selectively recover copper economically. Early 1998, a demonstration project was executed at the Wheal Jane mine in Cornwall, UK. In this demonstration project it has been proven that THIOPAQ technology can effectively be used to treat the Wheal Jane Acid Mine Drainage. Relative to lime dosing technology, very high removal efficiencies of all heavy metals (including cadmium and arsenic) can be obtained.
Address
Corporate Author Thesis
Publisher Elsevier Science B.V. Place of Publication Volume 9, Part 2 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological treatment of acid mine drainage; Science Direct Approved no
Call Number CBU @ c.wolke @ 17269 Serial 32
Permanent link to this record
 

 
Author (up) Guay, R.; Cantin, P.; Karam, A.; Vezina, S.; Paquet, A.; Ballester, R.A. and A.
Title Effect of flooding of oxidized mine tailings on T. ferrooxidans and T. thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up Type Book Chapter
Year 1999 Publication Process Metallurgy Abbreviated Journal
Volume Issue Pages 635-643
Keywords
Abstract A pilot-scale study on the effect of flooding unoxidized and oxidized Cu/Zn tailings demonstrated the technical feasability of this technology to remediate a mining site where over 3 million tons of tailings were impounded. Full-scale flooding of the tailing pond with free running water was undertaken after the construction of an impervious dam; approximately 2 million m3 of surface water at pH 7,4 completely covered the tailings after 16 months. The minimal water column over the tailings was established at 1,20 m and reached 4,5 m, depending on the site topography. Water and tailings samples were collected from 9 different locations from the surface of the man-made lake using a specially designed borer and were analyzed for pH, conductivity, iron- and sulfur-oxidizing bacteria activity and numbers as well as the sulfate reducing bacteria (SRB) population. We showed that over a four year period of flooding, the overall population of iron-oxidizers decreased considerably; their numbers drastically fell from 1x106 to 1x102 active cells per g of oxidized tailings while the SRBs increased from 101 to 105/g. The pH of the influent, the reservoir and the effluent water remained fairly constant between 6,9 up to 7,4 over the entire period. During this time, interstitial water pH increased from 2,9 to 4,3 in flooded tailings where lime could not be incorporated in the first 20 cm of tailings; elsewhere, the pH of the tailings suspensions remained fairly constant around neutral values (pH 7,0). Dissolved oxygen was measured at fixed intervals and remained also constant between 6 and 7.5 mg/L while water temperatures fluctuated below freezing point to +20C respectively in winter and summer season.
Address
Corporate Author Thesis
Publisher Elsevier Science B.V. Place of Publication Volume 9, Part 2 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Effect of flooding of oxidized mine tailings on T. ferrooxidans and T. thiooxidans survival and acid mine drainage production: a 4 year restoration-environmental follow-up; Science Direct Approved no
Call Number CBU @ c.wolke @ 17271 Serial 33
Permanent link to this record