|   | 
Details
   web
Records
Author Gong, Z.; Huang, J.; Jiang, H.
Title Study of comprehensive retrieval utilization and the treatment of acid mine wastewater Type Journal Article
Year 1996 Publication Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology Abbreviated Journal
Volume 27 Issue 4 Pages 432-435
Keywords acid mine drainage Asia China copper Far East heavy metals metals pH pollution sulfides utilization waste water water 22, Environmental geology
Abstract Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-9792 ISBN Medium
Area Expedition Conference
Notes Study of comprehensive retrieval utilization and the treatment of acid mine wastewater; 1998-066886; References: 4; 4 tables China (CHN); GeoRef; Chinese Approved no
Call Number (up) CBU @ c.wolke @ 16650 Serial 370
Permanent link to this record
 

 
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number (up) CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record
 

 
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H.
Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
Year 1996 Publication Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal
Volume Issue Pages 303-311
Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology
Abstract The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no
Call Number (up) CBU @ c.wolke @ 16654 Serial 334
Permanent link to this record
 

 
Author Al, T.A.
Title Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario Type Journal Article
Year 1996 Publication Journal of Hydrology Abbreviated Journal
Volume 180 Issue 1-4 Pages 55-78
Keywords mine water treatment
Abstract The Kidd Creek Cu-Zn sulphide mine is located near Timmins, Ontario. Mill tailings are thickened and deposited as a thickened slurry in a circular, conical-shaped pile with an area of approximately 1200 ha. Deposition of tailings as a thickened slurry results in a relatively uniform grain-size distribution and hydraulic conductivity, and a thick tension-saturated zone above the water table. The tailings are drained by numerous small, ephemeral stream channels, which have developed in a radial pattern. During storms, water from these streams collects in catchment ponds where it is held before treatment. The contribution of tailings pore water to the run off is of interest because of the potential for discharge of pore water containing high concentrations of Fe(II)-acidity, metals and SO4 to the stream. Hydraulic head measurements, measurements of water-table elevation and groundwater how modelling were conducted to determine the mechanisms responsible for tailings pore water entering the surface streams. Chemical hydrograph separation of storm run off in one of these streams, during three rainfall events, using Na and Cl as conservative tracers, indicates that the integrated tailings pore water fraction makes up between less than 1% and 20% of the total hydrograph. This range is less than the maximum fraction of tailings pore water of 22-65% reported for run off from a conventional tailings deposit. At this site, preferential flow through permeable fractures may be the dominant mechanism causing discharge of tailings pore water to storm run off. Estimates of the mass of Fe(II) that discharges to the surface run off from the pore water range up to 2800 mg s(-1) during a moderate intensity, long duration rainfall event. The greatest potential for discharge of significant masses of solutes derived from the pore water exists during long duration rainfall events, when the water table rises to the surface over large areas of the tailings impoundment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Storm-water hydrograph separation of run off from a mine-tailings impoundment formed by thickened tailings discharge at Kidd Creek, Timmins, Ontario; Wos:A1996up76700004; Times Cited: 7; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17162 Serial 85
Permanent link to this record
 

 
Author Juby, G.J.G.
Title Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process Type Journal Article
Year 1996 Publication Water Sa Abbreviated Journal
Volume 22 Issue 2 Pages 161-172
Keywords mine water treatment
Abstract The South African mining industry discharges relatively small quantities of mine service water to the environment, but these effluents contribute substantially to the salt load of the receiving waters. The poor quality of service water also has significant cost implications on the mining operations. Of the two main types of mine service water encountered in the gold mining industry, the so-called calcium sulphate scaling types is found in the majority of cases. Preliminary testwork on this type of water using membrane desalination processes revealed that only the seeded reverse osmosis type of process showed promise. To overcome certain process problems and high operating costs with this system, a novel membrane desalination technique incorporating seeded technology, called the SPARRO (slurry precipitation and recycle reverse osmosis) process, was developed. The novel features of the new process included; a lower linear slurry velocity in the membrane tubes, a lower seed slurry concentration, a dual pumping arrangement to a tapered membrane stack, a smaller reactor and a modified seed crystal and brine blow-down system. Evaluation of the SPARRO process and its novel features, over a five-year period, confirmed its technical viability for desalinating calcium sulphate-scaling mine water. The electrical power consumption of the process was approximately half that of previous designs, significantly improving its efficiency. Membrane performance was evaluated and was generally unsatisfactory with both fouling and hydrolysis dominating at times, although operating conditions for the membranes were not always ideal. The precise cause(s) for the membrane degradation was not established, but a mechanism for fouling (based upon the presence of turbidity in the mine water) and a hypothesis fora possible cause of hydrolysis (alluding to the presence of radionuclides in the mine water) were proposed. Product water from the SPARRO process has an estimated gross unit cost (including capital costs) of 383 c/m(3) (1994).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process; Wos:A1996uh88100009; Times Cited: 5; ISI Web of Science Approved no
Call Number (up) CBU @ c.wolke @ 17168 Serial 86
Permanent link to this record