|   | 
Details
   web
Records
Author Becker, B.; Graff, M.; Näveke, R.
Title (up) Biological Treatment of Overburden from Lignite Opencast Mining in Order to Avoid Seepage of Acid Mine Water Type Journal Article
Year 1997 Publication Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia Abbreviated Journal
Volume 2 Issue Pages 283-291
Keywords coal mining mine water acid mine water Germany treatment laboratory studies
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological Treatment of Overburden from Lignite Opencast Mining in Order to Avoid Seepage of Acid Mine Water; 1; FG 6 Abb.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9527 Serial 460
Permanent link to this record
 

 
Author Fricke, J.; Blickwedel, R.; Hagerty, P.
Title (up) Biotreatment of metal mine waste waters; case histories Type Journal Article
Year 1997 Publication Open-File Report US Geological Survey Abbreviated Journal
Volume Of 97-0496 Issue Pages 25
Keywords abandoned mines acid mine drainage bacteria bioremediation chemical composition concentration efficiency geochemistry metals mines pollution remediation USGS waste water water quality water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-1497 ISBN Medium
Area Expedition Conference
Notes Biotreatment of metal mine waste waters; case histories; 1; GeoRef: 98-68755 160101 / 0; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9627 Serial 375
Permanent link to this record
 

 
Author Bliss, L.N.; Sellstone, C.M.; Nicholson, A.D.; Kempton, J.H.
Title (up) Buffering of acid rock drainage by silicate minerals Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; buffers; chemical reactions; decontamination; environmental analysis; geochemistry; pH; pollution; remediation; silicates; sulfate ion; USGS 22 Environmental geology; 02A General geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Open-File Report - U. S. Geological Survey, Report: OF 97-0496 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 4th International symposium on Environmental geochemistry; proceedings Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-068723; 4th International symposium on Environmental geochemistry, Vail, CO, United States, Oct. 5-10, 1997 U. S. Geol. Surv., Denver, CO, United States; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6286 Serial 446
Permanent link to this record
 

 
Author Diz, H.R.
Title (up) Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity Type Book Whole
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; copper; effluents; ferrous iron; heavy metals; iron; manganese; metals; nickel; oxidation; pH; pollution; precipitation; rates; tailings; temperature; waste water; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6316 Serial 400
Permanent link to this record
 

 
Author Earley, D., III; Schmidt, R.D.; Kim, K.
Title (up) Is sustainable mining an oxymoron? Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acids data processing development ground water leaching mineral resources mining mining geology models monitoring pollution production solutions 26A Economic geology, general, deposits 22 Environmental geology
Abstract Sustainable mining is generally considered to be an oxymoron because mineral deposits are viewed as nonrenewable resources that are fixed in the crust. However, minerals are conserved and recycled by plate tectonics which continually creates and destroys ore deposits. Though it is true that rock cycles have much longer periods than biomass cycles, the crust is essentially an infinite reservoir so long as we continue to invest in mineral exploration and processing technology. Implicit in the definition of sustainable development is the recognition that human development of resources in one reservoir may subsequently degrade resources supplied by another. The depreciation of overlapping and adjacent resources is often externalized in the cost to benefit accounting and cannot be sustained if the integrated cost/benefit ratio is greater than 1. The greatest obstacle to sustainability in mining is the expanding scale of excavation required to develop leaner ores because this activity degrades connected resources. In the case of open pit, sulfide ore mining the disturbed land may produce acid rock drainage (ARD). Because ARD will self-generate over the course of tens to hundreds of years the cost of controlling this pollution and rehabilitating mined lands is large and often spread over many generations. Secondary production of minerals from partially excavated deposits where there are preexisting environmental impacts and mine infrastructure help to reduce the risk of depreciating pristine resources, provided that new mining operations “do no (additional) harm” (Margoles, 1996). In turn, a percentage of the profits derived from secondary mineral production can be used for rehabilitation of the previously mined lands. These lands contain significant, albeit low grade, metal concentrations. These concepts are being developed and tested at the Mineral Park Sustainable Mining Research Facility where an in situ copper sulfide mining field experiment was conducted. Monitoring data and computer modeling indicate that ARD is not generated after closure. This is because the ore is not disturbed and is left saturated, whereas unsaturated conditions generate acidic drainage. The short term risk of groundwater contamination is mitigated by utilizing an exempt mine pit to capture any leach solutions that are not intercepted by the wellfield. Using green accounting techniques and transfer models it can be communicated that this mining scenario is an approach to sustainability.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 1997 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-051450; Geological Society of America, 1997 annual meeting, Salt Lake City, UT, United States, Oct. 20-23, 1997; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16638 Serial 396
Permanent link to this record