|   | 
Details
   web
Records
Author Fernández Rubio, R.; Fábregas, A.L.; Baquero Ubeda, J.C.; Lorca Fernández, D.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 87-112
Keywords hydrogeology mining water drainage modelling treatment control pumping dewatering wells tunnels
Abstract
Address
Corporate Author Thesis
Publisher Proceedings International Mine Water Association Symposium Place of Publication (down) 1 Editor Nel Petrus Johannes, L.
Language Summary Language Original Title
Series Editor Series Title Mine Water and Environmental Impacts Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 062-02294-0-3 Medium
Area Expedition Conference
Notes Underground Mining Drainage, State of the Art; 1; AMD ISI | Wolkersdorfer; FG 'de' 15 Abb. Approved no
Call Number CBU @ c.wolke @ 9622 Serial 380
Permanent link to this record
 

 
Author Kuyucak, N.
Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
Year 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal
Volume 10 Issue 2 Pages 315-325
Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria
Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4352 ISBN Medium
Area Expedition Conference
Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17477 Serial 56
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Journal Article
Year 1998 Publication Environ Geosci Abbreviated Journal
Volume 5 Issue 2 Pages 43-56
Keywords acid mine drainage aerobic environment anaerobic environment attenuation chemical fractionation chemical properties concentration constructed wetlands controls degradation detection environmental analysis ferric iron goethite heavy metals iron jarosite Kentucky McCreary County Kentucky metals oxides pollutants pollution seepage soils solubility sulfates surface water United States water treatment wetlands X-ray diffraction data 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1075-9565 ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; 2001-034195; References: 41; illus. incl. 1 table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16623 Serial 61
Permanent link to this record
 

 
Author Herbert, R.B., Jr.; Benner, S.G.; Blowes, D.W.
Title Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation Type Book Chapter
Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal
Volume Issue Pages 451-457
Keywords acid mine drainage Canada chemical analysis contaminant plumes Eastern Canada ground water hydraulic conductivity hydrolysis Nickel Rim Mine Ontario pH pollution porosity pyrrhotite remediation sample preparation Sudbury Basin sulfides sulfur tailings water pollution 22, Environmental geology
Abstract A permeable reactive barrier was installed in August 1995 at the Nickel Rim Mine near Sudbury, Ontario, Canada, for the passive remediation of groundwater contaminated with acid mine drainage. The reactive component of the barrier consists of a mixture of municipal and leaf compost and wood chips: the organic material promotes bacterially-mediated sulphate reduction. Hydrogen sulphide, a product of sulphate reduction, may then complex with aqueous ferrous iron and precipitate as iron sulphide. This study presents the solid phase sulphur chemistry of the reactive wall after two years of operation, and discusses the formation and accumulation of iron sulphide minerals in the reactive material. The results from the solid-phase chemical analysis of core samples indicate that there is an accumulation of reduced inorganic sulphur in the reactive wall, with levels reaching 190 mu mol g (super -1) (dry weight) by July 1997.
Address
Corporate Author Thesis
Publisher IAHS-AISH Publication, vol.250 Place of Publication (down) Editor Herbert, M.; Kovar, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1901502554 Medium
Area Expedition Conference
Notes Reactive barrier treatment of groundwater contaminated by acid mine drainage; sulphur accumulation and sulphide formation; GeoRef; English; 1999-065115; GQ 98 conference, Tubingen, Federal Republic of Germany, Sept. 21-24, 1998 References: 15; illus. Approved no
Call Number CBU @ c.wolke @ 16621 Serial 65
Permanent link to this record
 

 
Author Wiessner, A.
Title The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke Type Journal Article
Year 1998 Publication Colloids and Surfaces a-Physicochemical and Engineering Aspects Abbreviated Journal
Volume 139 Issue 1 Pages 91-97
Keywords mine water treatment
Abstract To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke; Wos:000074411100012; Times Cited: 1; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17147 Serial 133
Permanent link to this record