toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Konieczny, K. url  openurl
  Title Mining waters treatment for drinking and economic aims Type Journal Article
  Year 2003 Publication VI National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering Abbreviated Journal  
  Volume 21 Issue Pages 333-348  
  Keywords mine water treatment  
  Abstract Poland is comparatively a poor country in relation to resources of drinking water. In count per capita it is oil one of the last places in Europe. Such state forces to save resources for example by closing water circulations and also desalination of mining waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Mining waters treatment for drinking and economic aims; Isip:000245280000020; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7958 Serial 149  
Permanent link to this record
 

 
Author Naugle, W.K. url  openurl
  Title Remediation of the Eagle Mine superfund site: a biological success story Type Journal Article
  Year 2003 Publication Tailings and Mine Waste '03 Abbreviated Journal  
  Volume Issue Pages 481-485  
  Keywords mine water treatment  
  Abstract Remediation of the Eagle Mine Superfund Site began in 1988. Remedial action included: bulk-heading adits, flooding mine workings; constructing diversion ditches around waste rock; consolidating mine wastes in an on-site tailings pile; capping the tailings pile with a multi-layer, engineered cap; and revegetating disturbed areas with native plants. Flooding the mine workings resulted in unacceptable seepage into the Eagle River in late 1989. A water treatment plant was constructed to collect mine seepage and groundwater at the main tailings pile. In October 2001, construction of the remedy was declared “complete” and the site is now in the operation, maintenance and monitoring phase. A strong downward trend in zinc and cadmium concentrations in the Eagle River has occurred and, trout and macroinvertebrate populations have increased. Biological data are being used to establish water quality standards for the Eagle River.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation of the Eagle Mine superfund site: a biological success story; Isip:000186710100058; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17020 Serial 157  
Permanent link to this record
 

 
Author Younger, P.L. url  openurl
  Title Passive in situ remediation of acidic mine waste leachates: progress and prospects Type Journal Article
  Year 2003 Publication Land Reclamation: Extending the Boundaries Abbreviated Journal  
  Volume Issue Pages 253-264  
  Keywords mine water treatment  
  Abstract The reclamation of former mining sites is a major challenge in many parts of the world. In relation to the restoration of spoil heaps (mine waste rock piles) and similar bodies of opencast backfill, key challenges include (i) the establishment of stable slopes and minimization of other geotechnical hazards (ii) developing and maintaining a healthy vegetative cover (iii) managing the hydrological behaviour of the restored ground. Significant advances have been made over the past four decades in relation to all four of these objectives. One of the most recalcitrant problems is the ongoing generation and release of acidic leachates, which typically emerge at the toes of (otherwise restored) spoil heaps in the form of springs and seepage areas. Such features are testament to the presence of a “perched” groundwater circulation system within the spoil, and their acidity reflects the continued penetration of oxygen to zones within the heaps which contain reactive pyrite (and other iron sulphide minerals). Two obvious strategies for dealing with this problem are disruption of the perched groundwater system and/or exclusion of oxygen entry. These strategies are now being pursued with considerable success where spoil is being reclaimed for the first time, by the installation of two types of physical barrier (dry covers and water covers). However, where a spoil heap has already been revegetated some decades ago, the destruction of an established sward or woodland in order to retro-fit a dry cover or water cover is rarely an attractive option for dealing with the “secondary dereliction” represented by ongoing toe seepages of acidic leachates. More attractive by far are passive treatment techniques, in which the polluted water is forced to flow through reactive media which serve to neutralize its acidity and remove toxic metals from solution. A brief historical review of the development of such systems reveals a general progression from using limestone as the key neutralizing agent, through a combined use of limestone and compost, to systems in which almost all of the neutralization is achieved by means of bacterial sulphate reduction in the saturated compost media of subsurface-flow bioreactors. In almost all cases, these passive treatment systems include an aerobic, surface flow wetland as the final “polishing” step in the treatment process. Such wetlands combine treatment functions (efficient removal of metals from the now-neutralized waters down to low residual concentrations, and re-oxygenating the water prior to discharge to receiving watercourses) with amenity value (attractive areas for recreational walking, bird-watching etc) and ecological value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Passive in situ remediation of acidic mine waste leachates: progress and prospects; Isip:000183447100035; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17016 Serial 158  
Permanent link to this record
 

 
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M. url  openurl
  Title Treatment of mine drainage using permeable reactive materials Type Journal Article
  Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal  
  Volume 31 Issue Pages 361-376  
  Keywords acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0144-7815 ISBN Medium  
  Area Expedition Conference  
  Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7910 Serial 182  
Permanent link to this record
 

 
Author Ziemkiewicz, P.F.; Skousen, J.G.; Simmons, J. openurl 
  Title Long-term Performance of Passive Acid Mine Drainage Treatment Systems Type Journal Article
  Year 2003 Publication Mine Water Env. Abbreviated Journal  
  Volume 22 Issue 3 Pages 118-129  
  Keywords acidity acid load aerobic wetlands anaerobic wetlands anoxic limestone drains limestone leach beds open limestone channels slag leach beds successive alkalinity producing systems vertical flow wetlands  
  Abstract State and federal reclamation programs, mining operators, and citizen-based watershed organizations have constructed hundreds of passive systems in the eastern U.S. over the past 20 years to provide reliable, low cost, low maintenance mine water treatment in remote locations. While performance has been reported for individual systems, there has not been a comprehensive evaluation of the performance of each treatment type for a wide variety of conditions. We evaluated 83 systems: five types in eight states. Each system was monitored for influent and effluent flow, pH, net acidity, and metal concentrations. Performance was normalized among types by calculating acid load reductions and removals, and by converting construction cost, projected service life, and metric tonnes of acid load treated into cost per tonne of acid treated. Of the 83 systems, 82 reduced acid load. Average acid load reductions were 9.9 t/yr for open limestone channels (OLC), 10.1 t/yr for vertical flow wetlands (VFW), 11.9 t/yr for anaerobic wetlands (AnW), 16.6 t/yr for limestone leach beds (LSB), and 22.2 t/yr for anoxic limestone drains (ALD). Average costs for acid removal varied from $83/t/yr for ALDs to $527 for AnWs. Average acid removals were 25 g/m2/day for AnWs, 62 g/m2/day for VFWs, 22 g/day/t for OLCs, 28 g/day/t for LSBs, and 56 g/day/t for ALDs. It appears that the majority of passive systems are effective but there was wide variation within each system type, so improved reliability and efficiency are needed. This report is an initial step in determining passive treatment system performance; additional work is needed to refine system designs and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Long-term Performance of Passive Acid Mine Drainage Treatment Systems; 1; FG 1 Abb., 7 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17454 Serial 187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: