|   | 
Details
   web
Records
Author (up) Laine, D.M.; Jarvis, A.P.
Title Design aspects of passive in situ remediation schemes for minign & industrial effluents Type Journal Article
Year 2003 Publication Tübinger Geowissenschaftliche Arbeiten Abbreviated Journal
Volume C68 Issue Pages 95-113
Keywords mine water passive treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-4948 ISBN Medium
Area Expedition Conference
Notes Design aspects of passive in situ remediation schemes for minign & industrial effluents; 1; FG 1 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9759 Serial 319
Permanent link to this record
 

 
Author (up) McLeod, K.W.; Ciravolo, T.G.
Title Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions Type Journal Article
Year 2003 Publication Environmental Toxicology and Chemistry Abbreviated Journal
Volume 22 Issue 12 Pages 2948-2951
Keywords Heavy metals ecological abstracts: pollution (73 7 3) seedling saturated medium biomass manganese sensitivity analysis bioaccumulation Nyssa aquatica Taxodium distichum
Abstract In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 < mu >g/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.
Address K.W. McLeod, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, United States mcleod@srel.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-7268 ISBN Medium
Area Expedition Conference
Notes Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions; 2574798; United-States 15; Geobase Approved no
Call Number CBU @ c.wolke @ 16010 Serial 302
Permanent link to this record
 

 
Author (up) Naugle, W.K.
Title Remediation of the Eagle Mine superfund site: a biological success story Type Journal Article
Year 2003 Publication Tailings and Mine Waste '03 Abbreviated Journal
Volume Issue Pages 481-485
Keywords mine water treatment
Abstract Remediation of the Eagle Mine Superfund Site began in 1988. Remedial action included: bulk-heading adits, flooding mine workings; constructing diversion ditches around waste rock; consolidating mine wastes in an on-site tailings pile; capping the tailings pile with a multi-layer, engineered cap; and revegetating disturbed areas with native plants. Flooding the mine workings resulted in unacceptable seepage into the Eagle River in late 1989. A water treatment plant was constructed to collect mine seepage and groundwater at the main tailings pile. In October 2001, construction of the remedy was declared “complete” and the site is now in the operation, maintenance and monitoring phase. A strong downward trend in zinc and cadmium concentrations in the Eagle River has occurred and, trout and macroinvertebrate populations have increased. Biological data are being used to establish water quality standards for the Eagle River.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Remediation of the Eagle Mine superfund site: a biological success story; Isip:000186710100058; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17020 Serial 157
Permanent link to this record
 

 
Author (up) Rukin, N.
Title Whittle mine water treatment system: In-river attenuation of manganese Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 137-144
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) river water natural attenuation manganese water treatment mine drainage coal mine
Abstract Much work has been undertaken on the design of treatment systems to remove iron from ochreous mine water discharges. Unlike iron, manganese removal is far more difficult and generally requires active chemical dosing rather than passive treatment. The need for manganese removal can therefore significantly change the economics, management attention and sustainability of a site. Understanding natural attenuation of manganese in river systems is therefore key to deciding whether (active) manganese treatment is needed to protect downstream receptors. Nuttall (2002, this volume) describes the effectiveness of the passive treatment system at Whittle in reducing both iron and manganese concentrations in ochreous mine waters. This paper discusses the results of in-river monitoring and provides evidence for manganese removal downstream of the discharge point. In addition to dilution, attenuation appears to be in the order of 20 to 50%, depending on relative rates of mine water discharge and river flows. Such attenuation means that active treatment may not be needed for the long-term operation of the Whittle scheme. Operation of the scheme commenced in July 2002, with monitoring to further examine evidence for manganese attenuation and any impact on the ecology of the recipient watercourses.
Address N. Rukin, Entec UK Ltd., 160-162 Abbey Foregate, Shrewsbury SY2 6BZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Whittle mine water treatment system: In-river attenuation of manganese; 2530418; United-Kingdom 2; Geobase Approved no
Call Number CBU @ c.wolke @ 17521 Serial 257
Permanent link to this record
 

 
Author (up) Taylor, J.; Waters, J.
Title Treating ARD; how, when, where and why Type Journal Article
Year 2003 Publication Mining Environmental Management Abbreviated Journal
Volume 11 Issue 3 Pages 6-9
Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5528 Serial 225
Permanent link to this record