|   | 
Details
   web
Records
Author Smyth, D.; Blowes, D.; Ptacek, C.; Bain, J.
Title Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater Type Journal Article
Year 2004 Publication Geotechnical News Abbreviated Journal
Volume 22 Issue 1 Pages 39-44
Keywords acid mine drainage; acid rock drainage; aquifers; Canada; Cochrane District Ontario; concentration; disposal barriers; Eastern Canada; ground water; Kidd Creek; mine drainage; mines; Ontario; oxidation; permeability; permeable reactive barrier; pollutants; pollution; remediation; sulfates; sulfides; tailings; testing; Timmins Ontario; waste disposal; waste management; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0823-650x ISBN Medium
Area Expedition Conference
Notes Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater; 2006-058196; References: 20; sects. Canada (CAN); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5457 Serial 66
Permanent link to this record
 

 
Author Wiseman, I.M.; Rutt, G.P.; Edwards, P.J.
Title Constructed wetlands for minewater treatment: Environmental benefits and ecological recovery Type Journal Article
Year 2004 Publication Water and Environment Journal Abbreviated Journal
Volume 18 Issue 3 Pages 133-138
Keywords mine water treatment
Abstract The ecology of the River Pelenna (in South Wales) was impoverished by polluted discharges from abandoned coal mines. A series of passive constructed wetlands was created in order to treat these discharges and to improve the ecology of the river. A three-year Environment Agency R&D project investigated the performance, environmental benefits and sustainability of the constructed wetlands. It showed that the treatment systems were removing most of the iron contamination. In the reaches downstream from the minewaters, the dissolved-iron concentration quickly dropped below the target level. Invertebrate abundance, trout and riverine bird populations increased in following years. However, occasional overflows from the systems have significantly affected the ecology of one stretch of river The research work has provided an insight into the potential for ecological recovery associated with future minewater treatment.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1747-6585 ISBN Medium
Area Expedition Conference
Notes Aug.; Constructed wetlands for minewater treatment: Environmental benefits and ecological recovery; Wos:000230520000002; Times Cited: 0; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7891.pdf; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7891 Serial 68
Permanent link to this record
 

 
Author Zhuang, J.M.
Title Lignor(TM) process for acidic rock drainage treatment Type Journal Article
Year 2004 Publication Environ. Technol. Abbreviated Journal
Volume 25 Issue 9 Pages 1031-1040
Keywords mine water treatment
Abstract The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor(TM) process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the clotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor(TM) process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 – 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor(TM) process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor(TM) process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Lignor(TM) process for acidic rock drainage treatment; Wos:000224971800006; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16998 Serial 117
Permanent link to this record
 

 
Author Ye, Z.H.
Title Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002 Type Journal Article
Year 2004 Publication Wetlands Ecosystems in Asia: Function and Management Abbreviated Journal
Volume 1 Issue Pages 413-434
Keywords mine water treatment
Abstract A constructed wetland system in Guangdong Province, South of China has been used for treating Pb/Zn mine discharge since 1984. In this chapter, the performance of this system in the purification of mine discharge, metal accumulation in different ecological compartments and ecological succession within the system during the period of 1984-2002 has been reviewed. The data show that the wetland system not only effectively remove metals (mainly Pb, Zn, Cd and Cu) and total suspended solids from the mine discharge over a long period leading to significant improvement in water quality, but also gradually increase diversity and abundance of living organisms.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Use of a wetland system for treating Pb/Zn mine effluent: A case study in southern China from 1984 to 2002; Isip:000226088800023; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16997 Serial 155
Permanent link to this record
 

 
Author Bolzicco, J.; Carrera, J.; Ayora, C.
Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type Journal Article
Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal
Volume 4 Issue Pages 27-34
Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology
Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no
Call Number CBU @ c.wolke @ 16471 Serial 443
Permanent link to this record