|   | 
Details
   web
Records
Author Jenk, U.; Zimmermann, U.; Ziegenbalg, G.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 721-727
Keywords Königstein Wismut GmbH uranium treatment mine water
Abstract (up) The former uranium ISL-mine at Königstein (Germany) is presently being flooded. To support the flooding process, a new technology to reduce contaminant potential in the source was developed and applied. The application based on the injection of supersaturated BaSO4-solutions to precipitate solved contaminants and to cover reactive mineral surfaces. Since 2002 the technology is applied in the southern part of the mine in order to immobilize contaminants in highly polluted areas before flooding. The article describes the fundamentals of the technology and the full-scale application.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Heidelberg Editor Merkel Broder, J.; Hasche-Berger, A.
Language Summary Language Original Title
Series Editor Series Title Uranium in the Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-540-28363-3 Medium
Area Expedition Conference
Notes The use of BaSO4 supersaturated solutions for in-situ immobilization of heavy metals in the abandoned Wismut GmbH uranium mine at Königstein; 1; AMD ISI | Wolkersdorfer; 5 Abb. Approved no
Call Number CBU @ c.wolke @ 17361 Serial 337
Permanent link to this record
 

 
Author Ayala, J.; Fernández, B.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 649-654
Keywords flying ash copper cyanide gold mine tailing ponds detoxification
Abstract (up) The objective of this study was to examine the use of flying ash to remove the copper cyanide species from gold mine effluents. In order to discharge them safely with minimum impact to the environment the effluents must be treated in such a way that the legal conditions were attained with the lowest possible cost. This paper presents the treatment of cyanide solution originating from tailing ponds at the end of detoxification by direct contact with flying ash.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes Adsorption of copper cyanide species from tailings pond on flying ash; 1; AMD ISI | Wolkersdorfer; FG 'aha' 4 Abb., 6 Tab. Approved no
Call Number CBU @ c.wolke @ 17296 Serial 472
Permanent link to this record
 

 
Author McKenzie, R.
Title Software Update to Better Predict Costs of Treating Mine Drainage Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume 24 Issue 4 Pages 213-215
Keywords AMD prediction software
Abstract (up) The U.S. Office of Surface Mining (OSM) is updating a popular software program that helps government agencies and mine water practioners predict what it will cost to treat acid mine drainage (AMD). Developers expect to release the update, AMDTreat Version 4.0, before the end of 2005. The new version will offer additional tools, expanded features, and a better user interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Software Update to Better Predict Costs of Treating Mine Drainage; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17389 Serial 303
Permanent link to this record
 

 
Author Kothe, E.
Title Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms Type Journal Article
Year 2005 Publication Chemie Der Erde-Geochemistry Abbreviated Journal
Volume 65 Issue Pages 7-27
Keywords mine water treatment
Abstract (up) The understanding of molecular mechanisms in the cycling of elements in general is essential to our alteration of current processes. One field where such geochemical element cycles are of major importance is the prevention and treatment of acid mine drainage waters (AMD) which are prone to occur in every anthropogenic, modified landscape where sulfidic rock material has been brought to the surface during mine operations. Microbiologically controlled production of AMD leads not only to acidification, but at the same time the dissolution of heavy metals makes them bioavailable posing a potential ecotoxicological risk. The water path then can contaminate surface and ground water resources which leads to even bigger problems in large catchment areas. The investigation of mechanisms in natural attenuation has already provided first ideas for applications of naturally occurring bioremediation schemes. Especially an improved soil microflora can enhance the natural attenuation when adapted microbes are applied to contaminated areas. Future schemes for plant extraction, control of water efflux by increasing evapotranspiration, and by subsequent land use with agricultural plants with biostabilization and phytosequestration potential will provide putative control measures. The mechanisms in parts of these processes have been evaluated and the resulting synthesis applied to derive a bioremediation plan using the former uranium mine in Eastern Thuringia as a case study. (c) 2005 Elsevier GrnbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms; Wos:000233975000002; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16965 Serial 114
Permanent link to this record
 

 
Author Ntengwe, F.W.
Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
Year 2005 Publication Phys. Chem. Earth Abbreviated Journal
Volume 30 Issue 11-16 Spec. Iss. Pages 726-734
Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World
Abstract (up) The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.
Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17497 Serial 24
Permanent link to this record