|   | 
Details
   web
Records
Author (down) Laspidou, C.S.
Title Constructed wetlands technology and water quality improvement: Recent advances Type Journal Article
Year 2005 Publication Proceeding of the 9th International Conference on Environmental Science and Technology Vol B – Poster Presentations Abbreviated Journal
Volume Issue Pages B503-B508
Keywords mine water treatment
Abstract Today's demands for improved water quality in receiving waters are widespread and require the implementation of systems that are natural, low-cost and minimal-maintenance that could effectively treat polluted discharges. Wetlands are such systems and are recently receiving a lot of attention from scientists, ecologists and engineers, as they are deemed appropriate for reducing the impact of effluent and run-off on receiving waters. Since a large part of natural wetlands have been lost-about 53% of them in the United States from the 1780s to the 1980s-management options for improving receiving water quality, water reclamation and reuse involve the application of constructed wetlands technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands technology and water quality improvement: Recent advances; Isip:000237755500082; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16966 Serial 152
Permanent link to this record
 

 
Author (down) LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author (down) Kothe, E.
Title Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms Type Journal Article
Year 2005 Publication Chemie Der Erde-Geochemistry Abbreviated Journal
Volume 65 Issue Pages 7-27
Keywords mine water treatment
Abstract The understanding of molecular mechanisms in the cycling of elements in general is essential to our alteration of current processes. One field where such geochemical element cycles are of major importance is the prevention and treatment of acid mine drainage waters (AMD) which are prone to occur in every anthropogenic, modified landscape where sulfidic rock material has been brought to the surface during mine operations. Microbiologically controlled production of AMD leads not only to acidification, but at the same time the dissolution of heavy metals makes them bioavailable posing a potential ecotoxicological risk. The water path then can contaminate surface and ground water resources which leads to even bigger problems in large catchment areas. The investigation of mechanisms in natural attenuation has already provided first ideas for applications of naturally occurring bioremediation schemes. Especially an improved soil microflora can enhance the natural attenuation when adapted microbes are applied to contaminated areas. Future schemes for plant extraction, control of water efflux by increasing evapotranspiration, and by subsequent land use with agricultural plants with biostabilization and phytosequestration potential will provide putative control measures. The mechanisms in parts of these processes have been evaluated and the resulting synthesis applied to derive a bioremediation plan using the former uranium mine in Eastern Thuringia as a case study. (c) 2005 Elsevier GrnbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms; Wos:000233975000002; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16965 Serial 114
Permanent link to this record
 

 
Author (down) Johnson, D.B.; Hallberg, K.B.
Title Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record
 

 
Author (down) Jenk, U.; Zimmermann, U.; Ziegenbalg, G.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 721-727
Keywords Königstein Wismut GmbH uranium treatment mine water
Abstract The former uranium ISL-mine at Königstein (Germany) is presently being flooded. To support the flooding process, a new technology to reduce contaminant potential in the source was developed and applied. The application based on the injection of supersaturated BaSO4-solutions to precipitate solved contaminants and to cover reactive mineral surfaces. Since 2002 the technology is applied in the southern part of the mine in order to immobilize contaminants in highly polluted areas before flooding. The article describes the fundamentals of the technology and the full-scale application.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Heidelberg Editor Merkel Broder, J.; Hasche-Berger, A.
Language Summary Language Original Title
Series Editor Series Title Uranium in the Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-540-28363-3 Medium
Area Expedition Conference
Notes The use of BaSO4 supersaturated solutions for in-situ immobilization of heavy metals in the abandoned Wismut GmbH uranium mine at Königstein; 1; AMD ISI | Wolkersdorfer; 5 Abb. Approved no
Call Number CBU @ c.wolke @ 17361 Serial 337
Permanent link to this record