|   | 
Details
   web
Records
Author Jenk, U.; Zimmermann, U.; Ziegenbalg, G.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 721-727
Keywords (down) Königstein Wismut GmbH uranium treatment mine water
Abstract The former uranium ISL-mine at Königstein (Germany) is presently being flooded. To support the flooding process, a new technology to reduce contaminant potential in the source was developed and applied. The application based on the injection of supersaturated BaSO4-solutions to precipitate solved contaminants and to cover reactive mineral surfaces. Since 2002 the technology is applied in the southern part of the mine in order to immobilize contaminants in highly polluted areas before flooding. The article describes the fundamentals of the technology and the full-scale application.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Heidelberg Editor Merkel Broder, J.; Hasche-Berger, A.
Language Summary Language Original Title
Series Editor Series Title Uranium in the Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-540-28363-3 Medium
Area Expedition Conference
Notes The use of BaSO4 supersaturated solutions for in-situ immobilization of heavy metals in the abandoned Wismut GmbH uranium mine at Königstein; 1; AMD ISI | Wolkersdorfer; 5 Abb. Approved no
Call Number CBU @ c.wolke @ 17361 Serial 337
Permanent link to this record
 

 
Author Houston, K.S.; Milionis, P.N.; Eppley, R.L.; Harrington, J.M.; Harrington, J.G.
Title Field Demonstration of In-Situ Treatment and Prevention of Acid Mine Drainage in the Abandoned Tide Mine, Indiana County, Pennsylvania Type Journal Article
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords (down) in situ ferrous sulfide precipitation sulfate reduction coal bromide tracer Tide Mine Center Township PA tracer study
Abstract A field demonstration of the Green World Science® patented process technology was performed to address acid mine drainage (AMD) at an abandoned bituminous coal mine, the Tide Mine in Center Township, Indiana County, PA. ARCADIS owns an exclusive patent license of the Green World Science® process, which can be used in situ to transform an aerobic, AMD-producing mine pool to a biologically mediated, sulfate-reducing state. The Green World Science® process treats the entire mine pool to address the source of AMD in place. The project was conducted through a grant agreement between the Blacklick Creek Watershed Association, the Pennsylvania Department of Environmental Protection's Bureau of Abandoned Mine Reclamation, and ARCADIS. In conjunction with the characterization of mine pool hydraulics through injection of a bromide tracer, the in situ treatments implemented at Tide Mine include the initial addition of alkalinity to create an environment suitable for biological activity, injection of organic carbon into the mine pool to facilitate microbially mediated metals reduction and precipitation, and injection of carbon dioxide gas into the atmosphere above the mine pool to control the dominant source of oxygen that perpetuates the AMD process. Collectively, these treatments raised the pH from a baseline of approximately 2.5 to over 6 during the demonstration period. The mine pool subsequently maintains a pH above 5 through microbially produced (i.e., bicarbonate) alkalinity. Ferric iron has been reduced to non-detect concentrations within the anaerobic mine pool, and aluminum concentrations have decreased by approximately 30%, with additional metals removal expected as the system becomes controlled by ferrous sulfide precipitation. The injection of carbon dioxide gas into the mine workings decreased oxygen concentrations above the mine pool from over 20% (ambient air conditions) to less than 5% over approximately three months, thus mitigating the source of AMD within the mine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 26th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2; als Datei vorhanden 6 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17355 Serial 347
Permanent link to this record
 

 
Author Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R.
Title Removal of heavy metals from mine waters by natural zeolites Type Journal Article
Year 2005 Publication Environ Sci Technol, ES & T Abbreviated Journal
Volume 39 Issue 12 Pages 4606-4613
Keywords (down) Groundwater problems and environmental effects Pollution and waste management non radioactive remediation heavy metal mine drainage acid mine drainage; acidification; Central Europe; chemical composition; chemical fractionation; dissolved materials; Europe; framework silicates; geochemistry; grain size; heavy metals; hydrochemistry; ion exchange; lead; metals; mines; mining; mobilization; models; pH; pollutants; pollution; precipitation; remediation; samples; silicates; spectra; Switzerland; toxic materials; X-ray diffraction data; X-ray fluorescence spectra; zeolite group
Abstract
Address G. Furrer, Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Zurich, Grabenstrasse 3, CH-8952 Schlieren, Switzerland gerhard.furrer@env.ethz.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium
Area Expedition Conference
Notes Removal of heavy metals from mine waters by natural zeolites; 2006-086777; References: 42; illus. incl. 3 tables United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5382 Serial 71
Permanent link to this record
 

 
Author Holtzhausen, L.
Title Minewater treatment technology revved up Type Journal Article
Year 2005 Publication Water Sewage and Effluent Abbreviated Journal
Volume 25 Issue 2 Pages 24-26
Keywords (down) Geobase: Related Topics geobase: related topics (901) water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8700 ISBN Medium
Area Expedition Conference
Notes Trade- Note; Minewater treatment technology revved up; 2710582; South-Africa; Geobase Approved no
Call Number CBU @ c.wolke @ 10344 Serial 348
Permanent link to this record
 

 
Author Ayala, J.; Fernández, B.
Title Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 649-654
Keywords (down) flying ash copper cyanide gold mine tailing ponds detoxification
Abstract The objective of this study was to examine the use of flying ash to remove the copper cyanide species from gold mine effluents. In order to discharge them safely with minimum impact to the environment the effluents must be treated in such a way that the legal conditions were attained with the lowest possible cost. This paper presents the treatment of cyanide solution originating from tailing ponds at the end of detoxification by direct contact with flying ash.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes Adsorption of copper cyanide species from tailings pond on flying ash; 1; AMD ISI | Wolkersdorfer; FG 'aha' 4 Abb., 6 Tab. Approved no
Call Number CBU @ c.wolke @ 17296 Serial 472
Permanent link to this record