|   | 
Details
   web
Records
Author Jenk, U.; Zimmermann, U.; Ziegenbalg, G.
Title (up) Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 721-727
Keywords Königstein Wismut GmbH uranium treatment mine water
Abstract The former uranium ISL-mine at Königstein (Germany) is presently being flooded. To support the flooding process, a new technology to reduce contaminant potential in the source was developed and applied. The application based on the injection of supersaturated BaSO4-solutions to precipitate solved contaminants and to cover reactive mineral surfaces. Since 2002 the technology is applied in the southern part of the mine in order to immobilize contaminants in highly polluted areas before flooding. The article describes the fundamentals of the technology and the full-scale application.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Heidelberg Editor Merkel Broder, J.; Hasche-Berger, A.
Language Summary Language Original Title
Series Editor Series Title Uranium in the Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-540-28363-3 Medium
Area Expedition Conference
Notes The use of BaSO4 supersaturated solutions for in-situ immobilization of heavy metals in the abandoned Wismut GmbH uranium mine at Königstein; 1; AMD ISI | Wolkersdorfer; 5 Abb. Approved no
Call Number CBU @ c.wolke @ 17361 Serial 337
Permanent link to this record
 

 
Author Greben, H.A.; Matshusa, M.P.; Maree, J.P.
Title (up) Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 339-345
Keywords water pollution biological Sulphate removal technology sulphate acidity metals treatment technique
Abstract Mining is implicated as a significant contributor to water pollution, the prime reason being, that pyrites oxidize to sulphuric acid when exposed to air and water. Mine effluents, often containing sulphate, acidity and metals, should be treated to render it suitable for re-use in the mining industry, for irrigation of crops or for discharge in water bodies. This study describes the removal of all three mentioned pollutants in mine effluents, from different origins, containing different concentrations of various metals. The objectives were achieved, applying the biological sulphate removal technology, using ethanol as the carbon and energy source. It was shown that diluting the mine effluent with the effluent from the biological treatment, the pH increased due to the alkalinity in the treated water while the metals precipitated with the produced sulphide. When this treatment regime was changed and the mine water was fed undiluted, it was found that the metals stimulated the methanogenic bacteria (MB) as trace elements. This resulted in a high COD utilization of the MB, such that too little COD was available for the SRB. Metal removal in all three studies was observed and in most instances the metals were eliminated to the required disposal concentration.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes The biological Sulphate removal technology; 1; AMD ISI | Wolkersdorfer; FG 'aha' 3 Abb., 9 Tab. Approved no
Call Number CBU @ c.wolke @ 17347 Serial 367
Permanent link to this record
 

 
Author Ayala, J.; Fernández, B.
Title (up) Type Book Whole
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 649-654
Keywords flying ash copper cyanide gold mine tailing ponds detoxification
Abstract The objective of this study was to examine the use of flying ash to remove the copper cyanide species from gold mine effluents. In order to discharge them safely with minimum impact to the environment the effluents must be treated in such a way that the legal conditions were attained with the lowest possible cost. This paper presents the treatment of cyanide solution originating from tailing ponds at the end of detoxification by direct contact with flying ash.
Address
Corporate Author Thesis
Publisher University of Oviedo Place of Publication Oviedo Editor Loredo, J.; Pendás, F.
Language Summary Language Original Title
Series Editor Series Title Mine Water 2005 – Mine Closure Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-689-3415-1 Medium
Area Expedition Conference
Notes Adsorption of copper cyanide species from tailings pond on flying ash; 1; AMD ISI | Wolkersdorfer; FG 'aha' 4 Abb., 6 Tab. Approved no
Call Number CBU @ c.wolke @ 17296 Serial 472
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B.
Title (up) Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record
 

 
Author Coulton, R.H.; Williams, K.P.
Title (up) Active treatment of mine water; a European perspective Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume 24 Issue 1 Pages 23-26
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Active treatment of mine water; a European perspective; 2007-023995; illus. incl. 3 tables Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5412 Serial 20
Permanent link to this record