|   | 
Details
   web
Records
Author Rees, B.
Title An overview of passive mine water treatment in Europe Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume (down) 24 Issue 1 Pages 26-28
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes An overview of passive mine water treatment in Europe; 2007-023994; 1 table Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5411 Serial 19
Permanent link to this record
 

 
Author Coulton, R.H.; Williams, K.P.
Title Active treatment of mine water; a European perspective Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume (down) 24 Issue 1 Pages 23-26
Keywords abandoned mines; Europe; ground water; mines; mining; pollutants; pollution; protection; surface water; water pollution; water quality; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Active treatment of mine water; a European perspective; 2007-023995; illus. incl. 3 tables Federal Republic of Germany (DEU); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5412 Serial 20
Permanent link to this record
 

 
Author McKenzie, R.
Title Software Update to Better Predict Costs of Treating Mine Drainage Type Journal Article
Year 2005 Publication Mine Water Env. Abbreviated Journal
Volume (down) 24 Issue 4 Pages 213-215
Keywords AMD prediction software
Abstract The U.S. Office of Surface Mining (OSM) is updating a popular software program that helps government agencies and mine water practioners predict what it will cost to treat acid mine drainage (AMD). Developers expect to release the update, AMDTreat Version 4.0, before the end of 2005. The new version will offer additional tools, expanded features, and a better user interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1025-9112 ISBN Medium
Area Expedition Conference
Notes Software Update to Better Predict Costs of Treating Mine Drainage; 1; Fg; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17389 Serial 303
Permanent link to this record
 

 
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume (down) 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author Gusek, J.J.
Title Design challenges for large scale sulfate reducing bioreactors Type Journal Article
Year 2005 Publication Contaminated Soils, Sediments and Water: Science in the Real World, Vol 9 Abbreviated Journal
Volume (down) 9 Issue Pages 33-44
Keywords mine water treatment
Abstract The first large-scale (1,200 gpm capacity), sulfate-reducing; bioreactor (SRBR) was constructed in 1996 to treat water from an underground lead mine in Missouri. Other large-scale SRBR systems have been built elsewhere since then. This technology holds much promise for economically treating heavy metals and has progressed steadily from the laboratory to industrial applications. Scale-up challenges include: designing for seasonal temperature variations, minimizing short circuits, changes in metal loading rate s, storm water impacts, and resistance to vandalism. However, the biggest challenge may be designing for the progressive biological degradation of the organic substrate and its effects on the hydraulics of the SRBR cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Design challenges for large scale sulfate reducing bioreactors; Isip:000225303300004; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16959 Serial 156
Permanent link to this record