Eger, P. (1995). Sulfate reduction for the treatment of acid mine drainage; Long term solution or short term fix? Sudbury '95 – Mining and the Environment, Conference Proceedings, Vols 1-3, , 515–524.
|
Eger, P. (1994). Wetland Treatment for Trace-metal Removal from Mine Drainage – the Importance of Aerobic and Anaerobic Processes. Water Sci. Technol., 29(4), 249–256.
Abstract: When designing wetland treatment systems for trace metal removal, both aerobic and anaerobic processes can be incorporated into the final design. Aerobic processes such as adsorption and ion exchange can successfully treat neutral drainage in overlandflow systems. Acid drainage can be treated in anaerobic systems as a result of sulfate reduction processes which neutralize pH and precipitate metals.Test work on both aerobic and anaerobic systems has been conducted in Minnesota. For the past three years, overland flow test systems have successfully removed copper, cobalt, nickel and zinc from neutral mine drainage. Nickel, which is the major contaminant, has been reduced around 90 percent from 2 mg/L to 0.2 mg/L. A sulfate reduction system has successfully treated acid mine drainage for two years, increasing pH from 5 to over 7 and reducing concentrations of all metals by over 90 percent.Important factors to consider when designing wetlands to remove trace metals include not only the type of wetlandrequired but also the size of the system and the residence time needed to achieve the water quality standards.
|
Eger, P., Melchert, G., Antonson, D., & Wagner, J. (1993). Magnesium hydroxide as a treatment for acid mine drainage in northern Minnesota. In B. A. Zamora, & R. E. Connolly (Eds.), Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 (pp. 204–217). The challenge of integrating diverse perspectives in reclamation.
Abstract: Three alkaline materials were investigated for their suitability to treat acid mine drainage generated by a research facility located at a remote site in northern Minnesota. The materials investigated were hydrated lime, sodium hydroxide, and magnesium hydroxide. All three reagents were successful at raising pH and removing trace metals from the drainage, but the magnesium hydroxide had the added benefit of producing a maximum pH of approximately 9.5, while the other two reagents resulted in pH values of 12 and greater. In addition, the magnesium hydroxide was available as a high solid content slurry (58%) which simplified application and handling, and which produced the lowest volume of sludge of the materials tested.
|
Eger, P., Melchert, G., & Wagner, J. (2000). Using passive treatment systems for mine closure – A good approach or a risky alternative? Min. Eng., 52(9), 78–83.
Abstract: In 1991, LTV Steel Mining decided to close an open-pit taconite mine in northeastern Minnesota using a passive-treatment approach consisting of limiting infiltration into the stockpiles and wetland treatment to remove metals. More than 50 Mt (55 million st) of sulfide-containing waste had been stockpiled adjacent to the mine during its 30 years of operation. Drainage from the stockpiles contained elevated levels of copper, nickel, cobalt and zinc. Nickel is the major trace metal in the drainages. Before the closure, the annual median concentrations ranged from 1.5 to 50 mg/L. Copper, cobalt and zinc are also present but they are generally less than 5% of the nickel values. Median pH levels range from 5 to 7.5, but most of the stockpile drainages have pH levels greater than 6.5. Based on the chemical composition of each stockpile, a cover material was selected. The higher the potential that a stockpile had to produce acid drainage, the lower the permeability of the capping material required. Covers ranged from overburden soil removed at the mine to a flexible plastic liner. Predictions of the reduction in infiltration ranged from 40% for the native soil to more than 90% for the plastic liner. Five constructed wetlands have been installed since 1992. They have removed 60% to 90% of the nickel in the drainages. Total capital costs for all the infiltration reduction and wetlands exceeded $6.5 million, but maintenance costs are less than 1% of those for an active treatment plant. Because mine-drainage problems can continue for more than 100 years, the lower annual operating costs should pay for the construction of the wetland-treatment systems within seven years.
|
Eger, P., Wagner, J. R., Kassa, J. R., & Melchert, G. D. (1994). Metal removal in wetland treatment systems. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 (pp. 80–88). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine Drainage.
|