Adam, K. (2003). Solid wastes management in sulphide mines: From waste characterisation to safe closure of disposal sites. Minerals and Energy Raw Materials Report, 18(4), 25–35.
Abstract: Environmentally compatible Waste Management schemes employed by the European extractive industry for the development of new projects, and applied in operating sulphide mines, are presented in this study. Standard methodologies used to assess the geotechnical and geochemical properties of the solid wastes stemming from mining and processing of sulphidic metal ores are firstly given. Based on waste properties, the measures applied to ensure the environmentally safe recycling and disposal of sulphidic wastes are summarised. Emphasis is given on the novel techniques developed to effectively prevent and mitigate the acid drainage phenomenon from sulphidic mine wastes and tailings. Remediation measures taken to minimise the impact from waste disposal sites in the post-closure period are described.
|
Gong, Z., Huang, J., & Jiang, H. (1996). Study of comprehensive retrieval utilization and the treatment of acid mine wastewater. Zhongnan Gongye Daxue Xuebao = Journal of Central South University of Technology, 27(4), 432–435.
Abstract: Impact of precipitating on removing harmful metal ion in the acid mine wastewater with pH neutralizer and sulfide was studied. The possible way of retrieving heavy metal ion in wastewater was probed. The techniques for lime carbonate to reject iron for hydrogen sulfide to precipitate copper and for zinc-lime cream neutralization flocculation to treat, mine acid wastewater were chosen. The final water quality may reach national effluent standard; the copper content was 32% in the sulfide slag.
|
Guo, F., & Yu, H. (1993). Hydrogeochemistry and treatment of acid mine drainage in southern China. In B. A. Zamora, & R. E. Connolly (Eds.), Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 (pp. 277–283). The challenge of integrating diverse perspectives in reclamation.
Abstract: Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
|
Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1-2), 3–14.
Abstract: Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
|
Lin, C., Lu, W., & Wu, Y. (2005). Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination. Australian Journal of Soil Research, 43(7), 819–826.
Abstract: Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.
|