Fyson, A., Nixdorf, B., & Steinberg, C. E. W. (1998). Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes. In S. Peiffer (Ed.), Water, Air and Soil Pollution (pp. 353–363). 108.
|
Haferkorn, B., Mueller, M., Zeh, E., Benthaus, F. K., Pester, L., Lietzow, A., et al. (1999). Schaffung von Tagebauseen im mitteldeutschen Bergbaurevier; die Wiederherstellung eines sich selbst regulierenden Wasserhaushaltes in den Braunkohleabbaugebieten des Freistaates Sachsen (Nordwestsachsen), des Landes Sachsen-Anhalt und des Freistaates Thueringen. Creation of open-pit lakes in central Germany mining district; the reclamation of some self-regulating water balance in abandoned lignite regions of the Saxony Free States Northwest Saxony), of the Saxony-Anhalt state and Free States. Berlin: Lmbv.
|
Magdziorz, A., & Sewerynski, J. (2000). The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation. In A. Rozkowski (Ed.), 7th international Mine Water Association congress; Mine water and the environment (pp. 430–442). Sosnowiec: Uniwersytet Slaski.
|
Marquardt, K. (1987). Muelldeponie-Sickerabwasseraufbereitung unter Anwendung der Membrantechnik. Waste disposal-seepage waters processing by use of the membrane technique Zeitgemaesse Deponietechnik. In Stuttgarter Berichte zur Abfallwirtschaft, vol.24 (pp. 187–234).
Abstract: Seepage waters from waste disposal sites are highly polluted waste waters. Waste water treatment methods such as flocculation, sedimentation, or biological treatment being usual up to now are no longer adequate to purify these waters. That is why this article investigates modern techniques such as ultra-filtration, reverse osmosis, vaporization, stripping. The following combination has proved to be effective: membrane method (two-stage reverse osmosis with tubular and package modul) for pre- and reprocessing, vaporization for solidifying the solvents, stripping in order to extract volatile matter. Methodology, usability and results are introduced and illustrated here in detail.
|
Sottnik, P., & Sucha, V. (2001). Moznosti upravy kysleho banskeho vytoku loziska Banska Stiavnica-Sobov. Remediation of acid mine drainage from Sobov Mine, Banska Stiavnica. Mineralia Slovaca, 33(1), 53–60.
Abstract: A waste dump formed during the exploitation of quartzite deposit in Sobov mine (Slovakia) produces large quantity of acid mine drainage (AMD) which is mainly a product of pyrite oxidation. Sulphuric acid--the most aggressive oxidation product--attacks gangue minerals, mainly clays, as well. This process lead to a sharp decrease of the pH values (2-2.5) and increase of Fe, Al and SO (super 2-) (sub 4) contents (TDS = 20-30 mg/1). Passive treatment system was designed to remediate AMD. Chemical redox reactions along with microbial activity cause a precipitation of mobile contamination into a more stable forms. The sulphides are formed in the anaerobic cell, under reducing conditions. Fe-, Al- oxyhydroxides are precipitated in the aerobic part of the system. Precipitation decreases the Fe and Al contents along with immobilization of some heavy metal closely related to oxyhydroxides. Besides oxidation, the wetland vegetation is an active part of on aerobic cell. The system has been working effectively since September 1999. The pH values of outflowing water are apparently higher (6.2-6.8) and contents of dissolved elements (Fe from 2.260 to 4.1; Al from 900 to 0.18; Mn from 51 to 23; Cu from 4.95 to 0.03 mg/l) is significantly lowers.
|