Ayala, J., & Fernández, B. (2005). (J. Loredo, & F. Pendás, Eds.). Mine Water 2005 – Mine Closure. Oviedo: University of Oviedo.
Abstract: The objective of this study was to examine the use of flying ash to remove the copper cyanide species from gold mine effluents. In order to discharge them safely with minimum impact to the environment the effluents must be treated in such a way that the legal conditions were attained with the lowest possible cost. This paper presents the treatment of cyanide solution originating from tailing ponds at the end of detoxification by direct contact with flying ash.
|
Becker, G., Wade, S., Riggins, J. D., Cullen, T. B., Venn, C., & Hallen, C. P. (2005). Effect of Bast Mine treatment discharge on Big Mine Run AMD and Mahanoy Creek in the Western Middle Anthracite Field of Pennsylvania.
Abstract: The Bast Mine (reopened in 2001) and Big Mine are two anthracite coal mines near Ashland, PA, that were abandoned in the 1930's and that are now causing drastic and opposite effects on the water quality of the streams originating from them. To quantify these effects, multiple samples were taken at 5 different sites: 3 along Big Mine Run and 2 from Mahanoy Creek (1 upstream and 1 downstream of the confluence with Big Mine Run). At each site, one set of the samples was treated with nitric acid for metals survey, one set was acidified with sulfuric acid for nitrate preservation, one set was filtered for sulfate and phosphate tests, and one set was unaltered. Measurements of pH, TDS, dissolved oxygen, and temperature were made in the field. Alkalinity, acidity, hardness, nitrates, orthophosphates and sulfates were analyzed using Hach procedures. Selected metals (Fe, Ni, Mg, Ca, Cu, Zn, Hg, Pb) were analyzed utilizing flame atomic absorption spectroscopy. Drainage from the Bast Mine is actively treated with hydrated lime before the water is piped down to Big Mine Run. pH and alkalinity values were much higher at the outflow compared to those in the water with which it merged. The two waters could be visibly distinguished some distance downstream. pH values decreased, sulfate and dissolved iron increased and alkalinity was reduced to zero until the confluence with Mahanoy Creek. The high alkalinity, turbidity, TDS and calcium values in Mahanoy Creek were somewhat reduced downstream of the confluence with the much lower discharge Big Mine Run.
|
Canty, G. A., & Everett, J. W. (2006). Injection of Fluidized Bed Combustion Ash into Mine Workings for Treatment of Acid Mine Drainage. Mine Water Env., 25(1), 45–55.
Abstract: A demonstration project was conducted to investigate treating acid mine water by alkaline injection technology (AIT). A total of 379 t of alkaline coal combustion byproduct was injected into in an eastern Oklahoma drift coal mine. AIT increased the pH and alkalinity, and reduced acidity and metal loading. Although large improvements in water quality were only observed for 15 months before the effluent water chemistry appeared to approach pre-injection conditions, a review of the data four years after injection identified statistically significant changes in the mine discharge compared to pre-injection conditions. Decreases in acidity (23%), iron (18%), and aluminium (47%) were observed, while an increase in pH (0.35 units) was noted. Presumably, the mine environment reached quasi-equilibrium with the alkalinity introduced to the system.
|
McConchie, D. M., Clark, M., Hanahan, C., & Baun, R. (2000). New treatments for the old problems of acid mine drainage and sulphidic mine tailings storage.
|
Srivastave, A., & Chhonkar, P. K. (2000). Amelioration of coal mine spoils through fly ash application as liming material. J. Ind. Res., 59(4), 309–313.
Abstract: The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
|