Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). A handbook of technologies for avoidance and remediation of acid mine drainage.
|
Smyth, D., Blowes, D., Ptacek, C., & Bain, J. (2004). Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater. Geotechnical News, 22(1), 39–44.
|
Stewart, D., Norman, T., Cordery-Cotter, S., Kleiner, R., Sweeney, E., & Nelson, J. D. (1997). Utilization of a ceramic membrane for acid mine drainage treatment. Tailings and Mine Waste '97, , 453–460.
Abstract: BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.
|
Taylor, J., & Waters, J. (2003). Treating ARD; how, when, where and why. Mining Environmental Management, 11(3), 6–9.
|
Ziemkiewicz, P. F., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Overview of acid mine drainage at-source control strategies. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|