Plant, J. (2006). Removal of base metals from mine waters using passive treatment processes involving autocatalytic oxidation and adsorption.
|
Hause, D. R., & Willison, L. R. (1986). Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage.
Abstract: Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
|
Bloom, N. S., Preus, E., Kilner, P. I., von der Geest, E., & Hensman, C. E. (2002). Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry..
|
Ballivy, G., & Bienvenu, L. (1998). Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998 (Vol. Rn 98-5034).
|
Ashby, J. C. (2001). Injecting alkaline lime sludge and FGD material into underground mines for acid abatement.
|