Akcil, A., & Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. J. Cleaner Prod., 14(12-13), 1139–1145.
Abstract: This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.
|
Anonymous. (1998). (S. H. Castro, F. Vergara, M. A. Sanchez, & D. of M. E. C. University of Concepcion, Eds.). Effluent treatment in the mining industry. Concepcion: University of Concepcion.
|
Anonymous, & Kontopoulos, A. (1998). Acid mine drainage control. In S. H. Castro, F. Vergara, & M. A. Sanchez (Eds.), Effluent treatment in the mining industry. Concepcion: University of Concepcion.
|
Berthelot, D., & Haggis, M. (1999). Application of remote monitoring and data management systems to environmental management of tailings facilities. In D. Goldsack, N. Belzile, P. Yearwood, & G. Hall (Eds.), Sudbury '99; Mining and the environment II; conference proceedings.
Abstract: The mining industry has made tremendous strides in the last 20 years in the prevention and control of acid mine drainage. However, there remain a number of circumstances where the long-term operation, care and maintenance of tailings management facilities will be required. The application of progressive environmental technologies and management systems is key to cost control and environmental liability management at these sites. Mine Waste Management Inc. currently operates Rio Algom Limited's five effluent treatment plants and seven waste management areas in the Elliot Lake, Ontario region using a Remote Plant Monitoring and Control Network (RPMCN). This system, based on Intellutions's “Fix 32” technology, enables the monitoring and control of these plants from a centralized location thus reducing labour costs while providing 24-hour surveillance. Scheduling, auditing and reporting of plant operating and environmental monitoring programs are integrated and controlled using the Envista (super TM) environmental information management system. Proper application of these technologies and management systems facilitates delivery of cost-effective environmental monitoring, and care and maintenance programs at these sites and provides tools to demonstrate compliance with all environmental performance criteria.
|
Blowes, D. W., Bain, J. G., Smyth, D. J., Ptacek, C. J., Jambor, J. L., Blowes, D. W., et al. (2003). Treatment of mine drainage using permeable reactive materials. Environmental Aspects of Mine Wastes, 31, 361–376.
|