Niyogi, D. K., McKnight, D. M., Lewis, W. M., Jr., & Kimball, B. A. (1999). Experimental diversion of acid mine drainage and the effects on a headwater stream. Water-Resources Investigations Report, Wri 99-4018-A, 123–130.
Abstract: An experimental diversion of acid mine drainage was set up near an abandoned mine in Saint Kevin Gulch, Colorado. A mass-balance approach using natural tracers was used to estimate flows into Saint Kevin Gulch. The diversion system collected about 85 percent of the mine water during its first year of operation (1994). In the first 2 months after the diversion, benthic algae in an experimental reach (stream reach around which mine drainage was diverted) became more abundant as water quality improved (increase in pH, decrease in zinc concentrations) and substrate quality changed (decrease in rate of metal hydroxide deposition). Further increases in pH to levels above 4.6, however, led to lower algal biomass in subsequent years (1995-97). An increase in deposition of aluminum precipitates at pH greater than 4.6 may account for the suppression of algal biomass. The pH in the experimental reach was lower in 1998 and algal biomass increased. Mine drainage presents a complex, interactive set of stresses on stream ecosystems. These interactions need to be considered in remediation goals and plans.
|
|
(2002). The BioSulphide Process to treat acid mine drainage and Anaconda tailings at Caribou Mine, New Brunswick (Vol. 2002-3).
|
|
Willscher, S. (2001). Loesungsansaetze zur Minderung der Umweltbelastung durch saure Grubenwaesser; I, Massnahmen zu deren Minimierung und Verfahren der aktiven Behandlung. Approaches for reducing environmental pollution by acid mine drainage; I, Mitigation measures and methods for active remediation. Vom Wasser, 97, 145–166.
|
|
Tabak, H. H., & Govind, R. (2004). Advances in biotreatment of acid mine drainage and biorecovery of metals 19th annual international conference on Soils, sediments, and water; abstracts. In Soil & Sediment Contamination (pp. 171–172). 13.
|
|
Hubbard, K. L., Darling, G. D., Rao, S. R., & Finch, J. A. (1994). New functional polymers as sorbents for the selective recovery of toxic heavy metals from acid mine drainage. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 (pp. 273–280). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage.
|