|
|
Ziemkiewicz, P. F., Skousen, J. G., Brant, D. L., Sterner, P. L., Lovett, R. J., Skousen, J. G., et al. (1996). Acid mine drainage treatment with armored limestone in open limestone channels. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|
|
|
Swoboda-Colberg, N., Colberg, P., & Smith, J. L. (1994). Constructed vertical flow aerated wetlands.
Abstract: In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.
|
|
|
|
Schwartz, M. O., & Ploethner, D. (1999). From mine water to drinking water; heavy-metal removal by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia.. Hanover: Bundesanst. fuer Geowiss. und Rohstoffe.
|
|
|
|
Gusek, J. J., & Wildeman, T. R. (1995). New developments in passive treatment of acid rock drainage Pollution prevention for process engineering. In P. E. Richardson, B. J. Scheiner, & Jr. F. Lanzetta (Eds.),. New York: Engineering Foundation.
|
|
|
|
Faulkner, B. B., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Treatment of acid mine drainage by passive treatment systems. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
|