|
Lushnikova, O. Y. (1996). Kompleksirovaniye metodov tamponazha i biolokatsii dlya zashchity podzemnykh vod ot zagryazneniya i istoshcheniya. Combined methods of grouting and biolocation for protection of ground water from pollution and depletion. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyy Zhurnal, 1996(12), 49–52.
|
|
|
LaPointe, F., Fytas, K., & McConchie, D. (2005). Using permeable reactive barriers for the treatment of acid rock drainage. International journal of surface mining, reclamation and environment, 19(1), 57–65.
Abstract: Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
|
|
|
Curi, A. C., Granda, W. J. V., Lima, H. M., & Sousa, W. T. (2006). Zeolites and their application in the decontamination of mine waste water. Informacion Tecnologica, 17(6), 111–118.
Abstract: This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
|
|
|
Bloom, N. S., Preus, E., Kilner, P. I., von der Geest, E., & Hensman, C. E. (2002). Very efficient removal of toxic metals from acid mine drainage water (Berkeley Pit, Montana) with a recycled alkaline industrial waste product Hardrock mining 2002; issues shaping the industry..
|
|
|
Ballivy, G., & Bienvenu, L. (1998). Stabilisation des rejets miniers a l'aide de rejets de cimenterie. Stabilization of mining wastes using cement factory wastes Activites de recherche du Ministere des Ressources Naturelles du Quebec sur le drainage minier acide; rapport 1997-1998. Research activities of the Quebec Natural Resources Ministry on acid mine drainage; report 1997-1998 (Vol. Rn 98-5034).
|
|