|
Greben, H. A., Matshusa, M. P., & Maree, J. P. (2005). (J. Loredo, & F. Pendás, Eds.). Mine Water 2005 – Mine Closure. Oviedo: University of Oviedo.
Abstract: Mining is implicated as a significant contributor to water pollution, the prime reason being, that pyrites oxidize to sulphuric acid when exposed to air and water. Mine effluents, often containing sulphate, acidity and metals, should be treated to render it suitable for re-use in the mining industry, for irrigation of crops or for discharge in water bodies. This study describes the removal of all three mentioned pollutants in mine effluents, from different origins, containing different concentrations of various metals. The objectives were achieved, applying the biological sulphate removal technology, using ethanol as the carbon and energy source. It was shown that diluting the mine effluent with the effluent from the biological treatment, the pH increased due to the alkalinity in the treated water while the metals precipitated with the produced sulphide. When this treatment regime was changed and the mine water was fed undiluted, it was found that the metals stimulated the methanogenic bacteria (MB) as trace elements. This resulted in a high COD utilization of the MB, such that too little COD was available for the SRB. Metal removal in all three studies was observed and in most instances the metals were eliminated to the required disposal concentration.
|
|
|
Gusek, J. J. (2002). Proceedings, Annual Conference – National Association of Abandoned Mine Land Programs. Park City.
Abstract: There are basically two kinds of biological passive treatment cells for treating mine drainage. Aerobic Cells, containing cattails and other plants, are typically applicable to coal mine drainage where iron and manganese and mild acidity are problematic. Anaerobic Cells or Sulfate-Reducing Bioreactors are typically applicable to metal mine drainage with high acidity and a wide range of metals. Most passive treatment systems employ one or both of these cell types. The track record of aerobic cells in treating coal mine drainage is impressive, especially in the eastern coalfields. Sulfate-reducing bioreactors have tremendous potential at metal mines and coal mines, but have not seen as wide an application. This paper presents the advantages of sulfate-reducing bioreactors in treating mine drainage, including: the ability to work in cold, high altitude environments, handle high flow rates of mildly affected ARD in moderate acreage footprints, treat low pH acid drainage with a wide range of metals and anions including uranium, selenium, and sulfate, accept acid drainagecontaining dissolved aluminum without clogging with hydroxide sludge, have life-cycle costs on the order of $0.50 per thousand gallons, and be integrated into “semi-passive” systems that might be powered by liquid organic wastes. Sulfate reducing bioreactors might not be applicable in every abandoned mine situation. However a phased design program of laboratory, bench, and pilot scale testing has been shown to increase the likelihood of a successful design.
|
|
|
Gusek, J. J., & Wildeman, T. R. (1995). New developments in passive treatment of acid rock drainage Pollution prevention for process engineering. In P. E. Richardson, B. J. Scheiner, & Jr. F. Lanzetta (Eds.),. New York: Engineering Foundation.
|
|
|
Hazen, J. M. (2000). Acid mine drainage characterization and remediation using a combination of hydrometric measurements, isotopes and dissolved solutes. Ph.D. thesis, University of Colorado,, .
|
|
|
Hellier, W. W., Giovannitti, E. F., & Slack, P. T. (1994). Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 (pp. 60–69). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage.
|
|