Kuyucak, N. (2001). Acid mine drainage; treatment options for mining effluents. Mining Environmental Management, 9(2), 12–15.
|
Barton, C. D., & Karathanasis, A. D. (1998). Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage. Environ Geosci, 5(2), 43–56.
|
Hellier, W. W., Giovannitti, E. F., & Slack, P. T. (1994). Best professional judgement analysis for constructed wetlands as a best available technology for the treatment of post-mining groundwater seeps. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 (pp. 60–69). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage.
|
Nawrot, J. R., Conley, P. S., & Sandusky, J. E. (1994). Concentrated alkaline recharge pools for acid seep abatement; principles, design, construction, and performance. In Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 (pp. 382–391). Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage.
|
Wolkersdorfer, C. (2002). Mine water tracing. Geological Society Special Publication, -(198), 47–60.
Abstract: This paper describes how tracer tests can be used in flooded underground mines to evaluate the hydrodynamic conditions or reliability of dams. Mine water tracer tests are conducted in order to evaluate the flow paths of seepage water, connections from the surface to the mine, and to support remediation plans for abandoned and flooded underground mines. There are only a few descriptions of successful tracer tests in the literature, and experience with mine water tracing is limited. Potential tracers are restricted due to the complicated chemical composition or low pH mine waters. A new injection and sampling method ('LydiA'-technique) overcomes some of the problems in mine water tracing. A successful tracer test from the Harz Mountains in Germany with Lycopodium clavatum, microspheres and sodium chloride is described, and the results of 29 mine water tracer tests indicate mean flow velocities of between 0.3 and 1.7 m min-1.
|