Home | << 1 2 3 >> |
Anonymous. (1998). Remediation of historical mine sites; technical summaries and bibliography. Littleton: Society for Mining, Metallurgy, and Exploration.
Keywords: abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology
|
Aube, B. C., & Zinck, J. M. (1999). Comparison of AMD treatment processes and their impact on sludge characteristics.
Abstract: Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.
|
Coulton, R., Bullen, C., & Hallett, C. (2003). The design and optimisation of active mine water treatment plants. Land Contam. Reclam., 11(2), 273–280.
Abstract: This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
|
Dempsey, B. A., & Jeon, B. - H. (2001). Characteristics of sludge produced from passive treatment of mine drainage. Geochem.-Explor. Environ. Anal., 1(1), 89–94.
Abstract: In the 1994 paper by Brown, Skousen & Renton it was argued that settleability and wet-packing density were the most important physical characteristics of sludge from treatment of mine drainage. These characteristics plus zeta-potential, intrinsic viscosity, specific resistance to filtration, and coefficient of compressibility were determined for several sludge samples from passive treatment sites and for several sludge samples that were prepared in the laboratory. Sludge from passive systems had high packing density, low intrinsic viscosity, low specific resistance to filtration and low coefficient of compressibility compared to sludge that was produced after addition of NaOH.
Keywords: acid mine drainage; aerobic environment; anaerobic environment; Appalachian Plateau; Appalachians; carbonate rocks; coagulation; compressibility; decontamination; density; drainage; filtration; geochemistry; Howe Bridge; Jefferson County Pennsylvania; limestone; mining geology; North America; passive systems; Pennsylvania; pH; pollution; ponds; rates; reclamation; sedimentary rocks; settling; sludge; slurries; suspended materials; United States; viscosity; wet packing density; wetlands; zeta-potential 22, Environmental geology
|
Heal, K. V., & Salt, C. A. (1999). Treatment of acidic metal-rich drainage from reclaimed ironstone mine spoil. Water Sci. Technol., 39(12), 141–148.
Abstract: Ironstone mine spoil leaves a legacy of land contamination and diffuse water pollution with acidic, metal-rich drainage. Reclamation for woodland may exacerbate water pollution due to spoil amendment and disturbance. Constructed wetland systems (CWS) are increasingly used for treating acid mine drainage but their performance is poorly understood. A combined approach was used to reclaim the Benhar ironstone spoil heap in Central Scotland. Trees have been planted in spoil treated with dried pelleted sewage sludge, limestone and peat. Spoil drainage (pH 2.7, 247 mg l-1 total Fe) passes through a CWS. Spoil throughflow, surface water chemistry and CWS performance were monitored for 12 months after reclamation. Acidity, Fe, Mn and Al concentrations declined in throughflow after reclamation, although this effect was not uniform. Soluble reactive P has been mobilised from the sewage sludge in residual areas of spoil acidity, but losses of other nutrients were short-lived. The CWS removes on average 33 % and 20-40 % of acidity and metal inputs but removal rates decrease in winter. Spoil reclamation has been successful in enabling vegetation establishment but has also increased Fe and Mn concentrations in surface drainage from the site, even after passage through the CWS.
|