|
Aytas, S. O., Akyil, S., Aslani, M. A. A., & Aytekin, U. (1999). Removal of uranium from aqueous solutions by diatomite (Kieselguhr). Journal of Radioanalytical and Nuclear Chemistry, 240(3), 973–976.
|
|
|
Benkovics, I., Csicsák, J., Csövári, M., Lendvai, Z., & Molnár, J. (1997). Mine Water Treatment – Anion-exchange and Membrane Process. Proceedings, 6th International Mine Water Association Congress, Bled, Slovenia, 1, 149–157.
|
|
|
Blowes, D. W., Bain, J. G., Smyth, D. J., Ptacek, C. J., Jambor, J. L., Blowes, D. W., et al. (2003). Treatment of mine drainage using permeable reactive materials. Environmental Aspects of Mine Wastes, 31, 361–376.
|
|
|
Entrena, A. L., Serrano, J. R., & Villoria, A. (1988). Descontaminacion de aguas de mina con recuperacion de los metales contenidos en ellas. Decontamination of mine waters by recovering the metals contained within them VIII congreso internacional de Mineria y metalurgia; tomo 8. VIII international conference on Mining and metallurgy; Volume 8. In Congreso Internacional de Mineria y Metalurgia, vol.8 (pp. 156–173).
|
|
|
Gerth, A., & Kießig, G. (2001). (A. Leeson, Ed.). Phytoremediation, wetlands and sediments. (6)5: Battelle Press.
Abstract: Treatment of radioactively-contaminated and metal-laden mine waters and of seepage fiom tailings ponds and waste rock piles is among the key issues facing WISMUT GmbH in their task to remediate the legacy of uranium mining and processing in the Free States of saxony and rhuringia, Federal Republic of Germany. Generally, contaminant loads of feed waters wn aimnisn over time. At a certain level of costs for the removal of one contaminant unit, continued operation of conventional water treatment plants can hardly be justified any longer. As treatment is still required for water protection, there is an urgent need for-the development and implementation of more cost efficient technologies. WISMUT GmbH and BioPlanta GmbH have studied the suitability of helophye species for contaminant removal from mine waters. In a fust step, original waters were used for an in vitro bioassay. The test results allowed for the determination of the effects of biotic and abiotic factors on helophy'tes'tolerancer ange, growth, and uptake capability of radionuclides and metals. Test series were carried out using Phiagmites australis, Carex disticha, Typha latifolia, and Juncus effusus. Relevant cont-aminant components of the mine waters under investigation included uraniunl iron, arsenic, manganese, nickel, and copper. Investigations led to a number of recommendations conceming plant selection for specific water treatment needs. In a second step, based on these results, a constructed wetland was built in l99g as a pilot plant for the treatment of flood waters liom the pöhla-Tellerhäuser mine and went on-line. Relevant constituents of the neutral flood waters include radium, iron, and arsenic. This wetland specifically uses both physico-chemical and microbiological processes as well as contaminant accumulation by helophytes to achieve the treatment objectives. with the pilot plant in operation for three years now, average removal rates achieved are 95 Yo for kon, 86 yo for arsenic, and 75 % for raäium. WISMUT GmbH intends to put a number of other projects of passive/biological mine water treatment into operation before the end of 2001_
|
|