Anonymous. (1998). (S. H. Castro, F. Vergara, M. A. Sanchez, & D. of M. E. C. University of Concepcion, Eds.). Effluent treatment in the mining industry. Concepcion: University of Concepcion.
|
Aube, B. C., & Zinck, J. M. (1999). Comparison of AMD treatment processes and their impact on sludge characteristics.
Abstract: Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.
|
Brunet, J. - F. (2000). Drainages miniers acides; contraintes et remedes; etat des connaissances--Acid mine drainage; problems and remediation techniques; state of the art. Principaux Resultats Scientifiques – Bureau de Recherches Geologiques et Minieres, 1999/2000, 97–98.
|
Coulton, R. H., & Williams, K. P. (2005). Active treatment of mine water; a European perspective. Mine Water Env., 24(1), 23–26.
|
Dillard, G. (2000). A win-win way to clean up by changing ionic state, new process can precipitate heavy metals. Pay Dirt, 734, 10–11.
|