Zou, L. H. (2000). Sulfide precipitation flotation for treatment of acidic mine waste water. Transactions of Nonferrous Metals Society of China, 10, 106–109.
Abstract: Sulfide precipitation flotation of copper-iron-bearing acidic waste water from a large copper mine and the stimulated waste water were studied. The pH of the waste water was 2.2, with 130 mg/L Cu2+ and 500 mg/L Fe3+ (Fe2+). Results show that, when Na2S was added as precipitating agent, sodium butylxanthate as collector and at pH 2.0, the removal of copper could be as high as 99.7 % and the residual copper decreased to 0.2 mg/L, however, almost no iron was removed. When the floated solution was neutralized to pH = 8.0, more than 98 % iron was precipitated and the residual iron was less than 10 mg/L. In experiment on actual mine effluents, after the use of precipitate flotation technology to recover copper and pH neutralization to precipitate iron, the treated waste water does meet the emission standards for sewage and valuable floating copper graded 37.12%. The chemical calculation and mechanism of solution were also presented.
|
Ziemkiewicz, P. F., Skousen, J. G., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Prevention of acid mine drainage by alkaline addition. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
Ziemkiewicz, P. F., Skousen, J. G., Lovett, R., Skousen, J. G., & Ziemkiewicz, P. F. (1996). Open limestone channels for treating acid mine drainage; a new look at an old idea. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
Ziemkiewicz, P. F., Skousen, J. G., Brant, D. L., Sterner, P. L., Lovett, R. J., Skousen, J. G., et al. (1996). Acid mine drainage treatment with armored limestone in open limestone channels. In Acid mine drainage control and treatment. Morgantown: West Virginia University and the National Mine Land Reclamation Center.
|
Ziemkiewicz, P., Skousen, J., & Simmons, J. (2001). Cost benefit analysis of passive treatment systems.
|