|
Mataix Gonzalez, C., & Escribano Bombin, M. (1996). Sistemas de control y tratamiento de drenajes acidos de minas. Control and treatment systems for acid mine drainage. Ingeopres, 42, 15–18.
|
|
|
Masarczyk, J., Hansson, C. H., Solomon, R. L., & Hallmans, B. (1989). Desalination Plant at Kwk-debiensko, Poland – Advanced Mine Drainage Water-treatment Engineering for Zero Discharge. Desalination, 75(1-3), 259–287.
Abstract: The river water in Poland has, to a great extent, such a high salinity that it cannot be used as drinking water, agricultural or industrial water. A large environmental project is now under progress in Katowice, Poland, in order to eliminate the wastewater discharge from two coal mines — Debiensko and Budryk. The highly brackish water will be desalinated in a reverse osmosis plant, followed by vapor compression distillation with seed crystals (RCC), crystallization and sodium chloride drying. This zero discharge process will produce about 8,000 m3/d drinking water an 370 tonnes/d NaCl. The paper describes the design of the plant. Trial operation of pre-treatment and reverse osmosis in a pilot plant for design of the full-scale plant at Debiensko is described in a separate paper.
|
|
|
Maniatis, T. (2005). Biological removal of arsenic from tailings pond water at Canadian mine. Arsenic Metallurgy, , 209–214.
Abstract: Applied Biosciences has developed a biological technology for removal of arsenic, nitrate, selenium, and other metals from mining and industrial waste waters. The ABMet((R)) technology was implemented at a closed gold mine site in Canada for removing arsenic from tailings pond water. The system included six bioreactors that began treating water in the spring of 2004. Design criteria incorporated a maximum flow of 567 L/min (150 gallons per minute) and water temperatures ranging from 10 degrees C to 15 degrees C. Influent arsenic concentrations range from 0.5 mg/L to 1.5 mg/L. The ABMet((R)) technology consistently removes arsenic to below detection limits (0.02 mg/L). Data from the full scale system will be presented, as well as regulatory requirements and site specific challenges.
|
|
|
Magdziorz, A., & Sewerynski, J. (2000). The use of membrane technique in mineralised water treatment for drinking and domestic purposes at “Pokoj” coal mine district under liquidation. In A. Rozkowski (Ed.), 7th international Mine Water Association congress; Mine water and the environment (pp. 430–442). Sosnowiec: Uniwersytet Slaski.
|
|
|
Macklin, M. G. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79(3-4), 423–447.
Abstract: As the result of current and historical metal mining, river channels and floodplains in many parts of the world have become contaminated by metal-rich waste in concentrations that may pose a hazard to human livelihoods and sustainable development. Environmental and human health impacts commonly arise because of the prolonged residence time of heavy metals in river sediments and alluvial soils and their bioaccumulatory nature in plants and animals. This paper considers how an understanding of the processes of sediment-associated metal dispersion in rivers, and the space and timescales over which they operate, can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by current and historical metal mining. A geomorphological approach to the management of rivers contaminated by metals is outlined and four emerging research themes are highlighted and critically reviewed. These are: (1) response and recovery of river systems following the failures of major tailings dams; (2) effects of flooding on river contamination and the sustainable use of floodplains; (3) new developments in isotopic fingerprinting, remote sensing and numerical modelling for identifying the sources of contaminant metals and for mapping the spatial distribution of contaminants in river channels and floodplains; and (4) current approaches to the remediation of river basins affected by mining, appraised in light of the European Union's Water Framework Directive (2000/60/EC). Future opportunities for geomorphologically-based assessments of mining-affected catchments are also identified. (c) 2006 Elsevier B.V. All rights reserved.
|
|